4,127 research outputs found

    Extending Lifetime of Wireless Sensor Networks using Forward Error Correction

    Get PDF

    Chiral phase properties of finite size quark droplets in the Nambu--Jona-Lasinio model

    Get PDF
    Chiral phase properties of finite size hadronic systems are investigated within the Nambu--Jona-Lasinio model. Finite size effects are taken into account by making use of the multiple reflection expansion. We find that, for droplets with relatively small baryon numbers, chiral symmetry restoration is enhanced by the finite size effects. However the radius of the stable droplet does not change much, as compared to that without the multiple reflection expansion.Comment: RevTex4, 9 pages, 6 figures, to be published in Phys. Rev.

    Experimental determination of the degree of quantum polarisation of continuous variable states

    Get PDF
    We demonstrate excitation-manifold resolved polarisation characterisation of continuous-variable (CV) quantum states. In contrast to traditional characterisation of polarisation that is based on the Stokes parameters, we experimentally determine the Stokes vector of each excitation manifold separately. Only for states with a given photon number does the methods coincide. For states with an indeterminate photon number, for example Gaussian states, the employed method gives a richer and more accurate description. We apply the method both in theory and in experiment to some common states to demonstrate its advantages.Comment: 5 page

    Differential atom interferometry beyond the standard quantum limit

    Full text link
    We analyze methods to go beyond the standard quantum limit for a class of atomic interferometers, where the quantity of interest is the difference of phase shifts obtained by two independent atomic ensembles. An example is given by an atomic Sagnac interferometer, where for two ensembles propagating in opposite directions in the interferometer this phase difference encodes the angular velocity of the experimental setup. We discuss methods of squeezing separately or jointly observables of the two atomic ensembles, and compare in detail advantages and drawbacks of such schemes. In particular we show that the method of joint squeezing may improve the variance by up to a factor of 2. We take into account fluctuations of the number of atoms in both the preparation and the measurement stage, and obtain bounds on the difference of the numbers of atoms in the two ensembles, as well as on the detection efficiency, which have to be fulfilled in order to surpass the standard quantum limit. Under realistic conditions, the performance of both schemes can be improved significantly by reading out the phase difference via a quantum non-demolition (QND) measurement. Finally, we discuss a scheme using macroscopically entangled ensembles.Comment: 10 pages, 5 figures; eq. (3) corrected and other minor change

    Closed forms and multi-moment maps

    Full text link
    We extend the notion of multi-moment map to geometries defined by closed forms of arbitrary degree. We give fundamental existence and uniqueness results and discuss a number of essential examples, including geometries related to special holonomy. For forms of degree four, multi-moment maps are guaranteed to exist and are unique when the symmetry group is (3,4)-trivial, meaning that the group is connected and the third and fourth Lie algebra Betti numbers vanish. We give a structural description of some classes of (3,4)-trivial algebras and provide a number of examples.Comment: 36 page

    Tracer Gas Technique Versus a Control Box Method for Estimating Direct Capture Efficiency of Exhaust Systems

    Get PDF
    • …
    corecore