300 research outputs found

    Bayesian analysis of the linear reaction norm model with unknown covariate

    Get PDF
    The reaction norm model is becoming a popular approach for the analysis of G x E interactions. In a classical reaction norm model, the expression of a genotype in different environments is described as a linear function (a reaction norm) of an environmental gradient or value. A common environmental value is defined as the mean performance of all genotypes in the environment, which is typically unknown. One approximation is to estimate the mean phenotypic performance in each environment, and then treat these estimates as known covariates in the model. However, a more satisfactory alternative is to infer environmental values simultaneously with the other parameters of the model. This study describes a method and its Bayesian MCMC implementation that makes this possible. Frequentist properties of the proposed method are tested in a simulation study. Estimates of parameters of interest agree well with the true values. Further, inferences about genetic parameters from the proposed method are similar to those derived from a reaction norm model using true environmental values. On the other hand, using phenotypic means as proxies for environmental values results in poor inferences

    Chiral phase properties of finite size quark droplets in the Nambu--Jona-Lasinio model

    Get PDF
    Chiral phase properties of finite size hadronic systems are investigated within the Nambu--Jona-Lasinio model. Finite size effects are taken into account by making use of the multiple reflection expansion. We find that, for droplets with relatively small baryon numbers, chiral symmetry restoration is enhanced by the finite size effects. However the radius of the stable droplet does not change much, as compared to that without the multiple reflection expansion.Comment: RevTex4, 9 pages, 6 figures, to be published in Phys. Rev.

    Charge and critical density of strange quark matter

    Full text link
    The electric charge of strange quark matter is of vital importance to experiments. A recent investigation shows that strangelets are most likely highly negatively charged, rather than slightly positively charged as previously believed. Our present study indicates that negative charges can indeed lower the critical density, and thus be favorable to the experimental searches in heavy ion collisions. However, too much negative charges can make it impossible to maintain flavor equilibrium.Comment: 4 pages, LATeX with REVTeX style, one PS figure. To be published in Phys. Rev. C 59(6), 199

    Mass formulas and thermodynamic treatment in the mass-density-dependent model of strange quark matter

    Full text link
    The previous treatments for strange quark matter in the quark mass-density-dependent model have unreasonable vacuum limits. We provide a method to obtain the quark mass parametrizations and give a self-consistent thermodynamic treatment which includes the MIT bag model as an extreme. In this treatment, strange quark matter in bulk still has the possibility of absolute stability. However, the lower density behavior of the sound velocity is opposite to previous findings.Comment: Formatted in REVTeX 3.1, 5 pages, 3 figures, to appear in PRC6

    Properties of Strangelets at Finite Temperature in Liquid Drop Model

    Full text link
    A comprehensive study of the properties of strangelets at zero and finite temperature is presented within the framework of liquid drop model, including the essential finite size effects. Strong parameter dependences of the properties are found and discussed.Comment: Revised version, some discussions added; 14 pages(Revtex), 8 figures; To be published in Phys. Rev.

    Constraints on the uncertainties of entangled symmetric qubits

    Get PDF
    We derive necessary and sufficient inseparability conditions imposed on the variance matrix of symmetric qubits. These constraints are identified by examining a structural parallelism between continuous variable states and two qubit states. Pairwise entangled symmetric multiqubit states are shown here to obey these constraints. We also bring out an elegant local invariant structure exhibited by our constraints.Comment: 5 pages, REVTEX, Improved presentation; Theorem on neccessary and sufficient condition included; To appear in Phys. Lett.

    Stability of strangelet at finite temperature

    Full text link
    Using the quark mass density- and temperature dependent model, we have studied the thermodynamical properties and the stability of strangelet at finite temperature. The temperature, charge and strangeness dependences on the stability of strangelet are investigated. We find that the stable strangelets are only occured in the high strangeness and high negative charge region.Comment: 12 pages, 14 figure

    Review of Speculative "Disaster Scenarios" at RHIC

    Get PDF
    We discuss speculative disaster scenarios inspired by hypothetical new fundamental processes that might occur in high energy relativistic heavy ion collisions. We estimate the parameters relevant to black hole production; we find that they are absurdly small. We show that other accelerator and (especially) cosmic ray environments have already provided far more auspicious opportunities for transition to a new vacuum state, so that existing observations provide stringent bounds. We discuss in most detail the possibility of producing a dangerous strangelet. We argue that four separate requirements are necessary for this to occur: existence of large stable strangelets, metastability of intermediate size strangelets, negative charge for strangelets along the stability line, and production of intermediate size strangelets in the heavy ion environment. We discuss both theoretical and experimental reasons why each of these appears unlikely; in particular, we know of no plausible suggestion for why the third or especially the fourth might be true. Given minimal physical assumptions the continued existence of the Moon, in the form we know it, despite billions of years of cosmic ray exposure, provides powerful empirical evidence against the possibility of dangerous strangelet production.Comment: 28 pages, REVTeX; minor revisions for publication (Reviews of Modern Physics, ca. Oct. 2000); email to [email protected]

    Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol

    Get PDF
    Climate change is expected to aggravate feed and food safety problems of crops; however, quantitative estimates are scarce. This study aimed to estimate impacts of climate change effects on deoxynivalenol contamination of wheat and maize grown in the Netherlands by 2040. Quantitative modelling was applied, considering both direct effects of changing climate on toxin contamination and indirect effects via shifts in crop phenology. Climate change projections for the IPCC A1B emission scenario were used for the scenario period 2031-2050 relative to the baseline period of 1975-1994. Climatic data from two different global and regional climate model combinations were used. A weather generator was applied for downscaling climate data to local conditions. Crop phenology models and prediction models for DON contamination used, each for winter wheat and grain maize. Results showed that flowering and full maturity of both wheat and maize will advance with future climate. Flowering advanced on average 5 and 11 days for wheat, and 7 and 14 days for maize (two climate model combinations). Full maturity was on average 10 and 17 days earlier for wheat, and 19 and 36 days earlier for maize. On the country level, contamination of wheat with deoxynivalenol decreased slightly, but not significantly. Variability between regions was large, and individual regions showed a significant increase in deoxynivalenol concentrations. For maize, an overall decrease in deoxynivalenol contamination was projected, which was significant for one climate model combination, but not significant for the other one. In general, results disagree with previous reported expectations of increased feed and food safety hazards under climate change. This study illustrated the relevance of using quantitative models to estimate the impacts of climate change effects on food safety, and of considering both direct and indirect effects when assessing climate change impacts on crops and related food safety hazards
    corecore