13 research outputs found

    Анализ основных показателей разработки Западно-Озерного газового месторождения (Чукотский автономный округ)

    Get PDF
    Актуальность освоения Западно-Озерного газового месторождения продиктована тем, что оно способно в течение двух десятилетий полностью обеспечивать теплоэнергетические потребности города Анадыря и прилегающих к нему населенных пунктов, тем самым, частично сняв проблему северного завоза нефтепродуктов.The relevance of the development of the Zapadno-Ozernoye gas field is dictated by the fact that it is able to fully meet the heat and power needs of the city of Anadyr and adjacent settlements for two decades, thereby partially removing the problem of the Northern import of petroleum products

    Diet-induced pre-diabetes slows cardiac conductance and promotes arrhythmogenesis

    Get PDF
    BACKGROUND: Type 2 diabetes is associated with abnormal electrical conduction and sudden cardiac death, but the pathogenic mechanism remains unknown. This study describes electrophysiological alterations in a diet-induced pre-diabetic rat model and examines the underlying mechanism. METHODS: Sprague–Dawley rats were fed either high-fat diet and fructose water or normal chow and water for 6 weeks. The electrophysiological properties of the whole heart was analyzed by in vivo surface ECG recordings, as wells as ex vivo in Langendorff perfused hearts during baseline, ischemia and re-perfussion. Conduction velocity was examined in isolated tissue strips. Ion channel and gap junction conductances were analyzed by patch-clamp studies in isolated cardiomyocytes. Fibrosis was examined by Masson’s Trichrome staining and thin-layer chromatography was used to analyze cardiac lipid content. Connexin43 (Cx43) expression and distribution was examined by western blotting and immunofluorescence respectively. RESULTS: Following 6 weeks of feeding, fructose-fat fed rats (FFFRs) showed QRS prolongation compared to controls (16.1 ± 0.51 (n = 6) vs. 14.7 ± 0.32 ms (n = 4), p < 0.05). Conduction velocity was slowed in FFFRs vs. controls (0.62 ± 0.02 (n = 13) vs. 0.79 ± 0.06 m/s (n = 11), p < 0.05) and Langendorff perfused FFFR hearts were more prone to ventricular fibrillation during reperfusion following ischemia (p < 0.05). The patch-clamp studies revealed no changes in Na(+) or K(+) currents, cell capacitance or gap junctional coupling. Cx43 expression was also unaltered in FFFRs, but immunofluorescence demonstrated an increased fraction of Cx43 localized at the intercalated discs in FFFRs compared to controls (78 ± 3.3 (n = 5) vs. 60 ± 4.2 % (n = 6), p < 0.01). No fibrosis was detected but FFFRs showed a significant increase in cardiac triglyceride content (1.93 ± 0.19 (n = 12) vs. 0.77 ± 0.13 nmol/mg (n = 12), p < 0.0001). CONCLUSION: Six weeks on a high fructose-fat diet cause electrophysiological changes, which leads to QRS prolongation, decreased conduction velocity and increased arrhythmogenesis during reperfusion. These alterations are not explained by altered gap junctional coupling, Na(+), or K(+) currents, differences in cell size or fibrosis

    Increased susceptibility to cardiovascular effects of dihydrocapcaicin in resuscitated rats. Cardiovascular effects of dihydrocapsaicin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Survivors of a cardiac arrest often have persistent cardiovascular derangements following cardiopulmonary resuscitation including decreased cardiac output, arrhythmias and morphological myocardial damage. These cardiovascular derangements may lead to an increased susceptibility towards the external and internal environment of the cardiovascular system as compared to the healthy situation.</p> <p>Methods</p> <p>Here we tested the hypothesis that the cardiovascular system in healthy rats and rats resuscitated from a cardiac arrest may be differentially affected by a transient receptor potential vanilloid type 1 agonist, by continuous intravenous infusion of dihydrocapsaicin (DHC).</p> <p>Results</p> <p>Compared to baseline, infusion of DHC caused an initial increase in mean arterial blood pressure in both healthy and resuscitated rats of 25% and 10%, respectively. Also, we observed an initial response of tachycardia in both healthy and resuscitated rats of 30% and 20%, respectively. Then, at high levels of DHC infusion (> 2.0 mg/kg/hr) we observed two single episodes of transient bradycardia and hypotension in 33% of the healthy rats, which was consistent with a TRPV1 agonist induced Bezold-Jarisch reflex. In contrast, in resuscitated rats we observed multiple episodes of bradycardia/hypotension in 100% of the rats and at a dose of DHC of 0.65 mg/kg/hr. Notably, this DHC effect could be completely blocked in the resuscitated rats by pre-treatment with atropine, a muscarinic acetylcholine antagonist.</p> <p>Conclusions</p> <p>Our results indicate that the susceptibility of the rats towards TRPV1 agonist induced Bezold-Jarisch reflex is increased in those resuscitated from cardiac arrest compared to the healthy situation.</p

    Case report:‘AARS2 leukodystrophy’

    No full text
    BACKGROUND: Mitochondrial alanyl-tRNA synthetase 2 gene (AARS2) related disease is a rare genetic disorder affecting mitochondrial metabolism, leading to severe cardiac disease in infants or progressive leukodystrophy in young adults. The disease is considered ultra-rare with only 39 cases of AARS2-leukodystrophy previously reported. CASE PRESENTATION: We present the case of a young man of consanguineous heritage suffering from cognitive decline and progressive spasticity as well as weakness of the proximal musculature. Utilizing MRI and whole genome sequencing, the patient was diagnosed with a homozygous AARS2 missense variant (NM_020745.3:c.650C > T; p.(Pro217Leu)) and a homozygous CAPN3 variant (NM_000070.2: c.1469G > A; p.(Arg490Gln)), both variants have previously been identified in patients suffering from AARS2 related leukodystrophy and limb-girdle muscular dystrophy, respectively. CONCLUSIONS: This case report presents a case of homozygous AARS2 leukodystrophy and serves to highlight the importance of whole genome sequencing in diagnosing rare neurological diseases as well as to add to the awareness of adult onset leukodystrophies

    Modular Design and Implementation for Rapid Deployment of Autonomous Systems

    No full text
    This paper describes the autonomous systems, which Technical University of Denmark used to participate in Challenge 2 of the Mohamed Bin Zayed International Robotics Challenge. We participated with two autonomous vehicles in the Challenge: an aerial and a ground vehicle. The mission of both of the vehicles was to locate blocks and use them to build a wall in a marked location. Our ground solution consisted of a SKID steered vehicle, with a Universal Robots arm attached to it, and our aerial solution was a DJI M100 quadrotor in X configuration, equipped with a rangefinder and camera. Both platforms each have their own custom build end-effector, designed for lifting flat magnetic objects. The software was designed with a modular approach based on the mobotware framework, such that mission scripts could rapidly be assembled at the deployment site. A state of the art neural network, for detecting blocks, was trained for our ground vehicle. The effectiveness of the modular approach was tested in the challenge, and our lessons learned is included in the paper.<br/

    Carbonic anhydrases reduce the acidity of the tumor microenvironment, promote immune infiltration, decelerate tumor growth, and improve survival in ErbB2/HER2-enriched breast cancer

    No full text
    Abstract Background Carbonic anhydrases catalyze CO2/HCO3 – buffer reactions with implications for effective H+ mobility, pH dynamics, and cellular acid–base sensing. Yet, the integrated consequences of carbonic anhydrases for cancer and stromal cell functions, their interactions, and patient prognosis are not yet clear. Methods We combine (a) bioinformatic analyses of human proteomic data and bulk and single-cell transcriptomic data coupled to clinicopathologic and prognostic information; (b) ex vivo experimental studies of gene expression in breast tissue based on quantitative reverse transcription and polymerase chain reactions, intracellular and extracellular pH recordings based on fluorescence confocal microscopy, and immunohistochemical protein identification in human and murine breast cancer biopsies; and (c) in vivo tumor size measurements, pH-sensitive microelectrode recordings, and microdialysis-based metabolite analyses in mice with experimentally induced breast carcinomas. Results Carbonic anhydrases—particularly the extracellular isoforms CA4, CA6, CA9, CA12, and CA14—undergo potent expression changes during human and murine breast carcinogenesis. In patients with basal-like/triple-negative breast cancer, elevated expression of the extracellular carbonic anhydrases negatively predicts survival, whereas, surprisingly, the extracellular carbonic anhydrases positively predict patient survival in HER2/ErbB2-enriched breast cancer. Carbonic anhydrase inhibition attenuates cellular net acid extrusion and extracellular H+ elimination from diffusion-restricted to peripheral and well-perfused regions of human and murine breast cancer tissue. Supplied in vivo, the carbonic anhydrase inhibitor acetazolamide acidifies the microenvironment of ErbB2-induced murine breast carcinomas, limits tumor immune infiltration (CD3+ T cells, CD19+ B cells, F4/80+ macrophages), lowers inflammatory cytokine (Il1a, Il1b, Il6) and transcription factor (Nfkb1) expression, and accelerates tumor growth. Supporting the immunomodulatory influences of carbonic anhydrases, patient survival benefits associated with high extracellular carbonic anhydrase expression in HER2-enriched breast carcinomas depend on the tumor inflammatory profile. Acetazolamide lowers lactate levels in breast tissue and blood without influencing breast tumor perfusion, suggesting that carbonic anhydrase inhibition lowers fermentative glycolysis. Conclusions We conclude that carbonic anhydrases (a) elevate pH in breast carcinomas by accelerating net H+ elimination from cancer cells and across the interstitial space and (b) raise immune infiltration and inflammation in ErbB2/HER2-driven breast carcinomas, restricting tumor growth and improving patient survival

    Characterization of DNA–protein complexes by nanoparticle tracking analysis and their association with systemic lupus erythematosus

    No full text
    Nanotechnology enables investigations of single biomacromolecules, but technical challenges have limited the application in liquid biopsies, for example, blood plasma. Nonetheless, tools to characterize single molecular species in such samples represent a significant unmet need with the increasing appreciation of the physiological importance of protein structural changes at nanometer scale. Mannose-binding lectin (MBL) is an oligomeric plasma protein and part of the innate immune system through its ability to activate complement. MBL also serves a role as a scavenger for cellular debris, especially DNA. This may link functions of MBL with several inflammatory diseases in which cell-free DNA now appears to play a role, but mechanistic insight has been lacking. By making nanoparticle tracking analysis possible in human plasma, we now show that superoligomeric structures of MBL form nanoparticles with DNA. These oligomers correlate with disease activity in systemic lupus erythematosus patients. With the direct quantification of the hydrodynamic radius, calculations following the principles of Taylor dispersion in the blood stream connect the size of these complexes to endothelial inflammation, which is among the most important morbidities in lupus. Mechanistic insight from an animal model of lupus supported that DNA-stabilized superoligomers stimulate the formation of germinal center B cells and drive loss of immunological tolerance. The formation involves an inverse relationship between the concentration of MBL superoligomers and antibodies to double-stranded DNA. Our approach implicates the structure of DNA–protein nanoparticulates in the pathobiology of autoimmune diseases
    corecore