23 research outputs found

    Genotoxic and Cytotoxic Studies of Beta-Sitosterol and Pteropodine in Mouse

    Get PDF
    Beta-sitosterol (BS) and pteropodine (PT) are constituents of various plants with pharmacological activities potentially useful to man. The chemicals themselves possess biomedical properties related to the modulation of the immune and the nervous systems, as well as to the inflammatory process. Therefore, safety evaluation of the compounds is necessary in regard to their probable beneficial use in human health. The present study evaluates their genotoxic and cytotoxic potential by determining the capacity of the compounds to induce sister chromatid exchanges (SCE), or to alter cellular proliferation kinetics (CPK) and the mitotic index (MI) in mouse bone marrow cells. Besides, it also determines their capacity to increase the rate of micronucleated polychromatic erythrocytes (MNPE) in peripheral mouse blood, and the relationship polychromatic erythrocytes/normochromatic erythrocytes (PE/NE) as an index of cytotoxicity. For the first assay, four doses of each compound were tested: 200, 400, 600, and 1000 mg/kg in case of BS, and 100, 200, 300, and 600 mg/kg for PT. The results in regard to both agents showed no SCE increase induced by any of the tested doses, as well as no alteration in the CPK, or in the MI. With respect to the second assay, the results obtained with the two agents were also negative for both the MNPE and the PE/NE index along the daily evaluation made for four days. In the present study, the highest tested dose corresponded to 80% of the LD(50) obtained for BS and to 78% in the case of PT. The results obtained establish that the studied agents have neither genotoxic nor cytotoxic effect on the model used, and therefore they encourage studies on their pharmacological properties

    Gene Expression Signature of DMBA-Induced Hamster Buccal Pouch Carcinomas: Modulation by Chlorophyllin and Ellagic Acid

    Get PDF
    Chlorophyllin (CHL), a water-soluble, semi-synthetic derivative of chlorophyll and ellagic acid (EA), a naturally occurring polyphenolic compound in berries, grapes, and nuts have been reported to exert anticancer effects in various human cancer cell lines and in animal tumour models. The present study was undertaken to examine the mechanism underlying chemoprevention and changes in gene expression pattern induced by dietary supplementation of chlorophyllin and ellagic acid in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by whole genome profiling using pangenomic microarrays. In hamsters painted with DMBA, the expression of 1,700 genes was found to be altered significantly relative to control. Dietary supplementation of chlorophyllin and ellagic acid modulated the expression profiles of 104 and 37 genes respectively. Microarray analysis also revealed changes in the expression of TGFβ receptors, NF-κB, cyclin D1, and matrix metalloproteinases (MMPs) that may play a crucial role in the transformation of the normal buccal pouch to a malignant phenotype. This gene expression signature was altered on treatment with chlorophyllin and ellagic acid. Our study has also revealed patterns of gene expression signature specific for chlorophyllin and ellagic acid exposure. Thus dietary chlorophyllin and ellagic acid that can reverse gene expression signature associated with carcinogenesis are novel candidates for cancer prevention and therapy

    Evaluation of teratogenicity and genotoxicity induced by kramecyne (KACY)

    No full text
    Kramecyne (KACY), a polymer isolated from Krameria cytisoides Cav, has anti-inflammatory, anti-nociceptive, anti-arthritic and anti-ulcerogenic properties. As a part of standard preclinical safety tests, the present study sought to determine potential developmental toxicity (in female rats) and genotoxicity (in male mice) of KACY. Pregnant female rats were divided into six groups: the negative control (vehicle), the positive control (250 mg/kg of acetylsalicylic acid (ASA)), and four experimental groups (50, 250, 500 and 1000 mg/kg of KACY). To evaluate genotoxicity by in vivo micronuclei (MN) and sister chromatid exchange (SCE) tests, male mice were divided into five groups: the negative control (vehicle), the positive control (1.5 and 2.5 mg/kg of doxorubicin for MN and SCE, respectively), and three experimental groups (50, 500 and 1000 mg/kg of KACY). All treatments were administered by oral gavage. A slight maternal toxicity was evidenced by lower weight gain for rats receiving 500 and 1000 mg/kg of KACY, but no fetal malformations were found. However, there were less live fetuses/litter and greater post-implantation loss/litter at these two doses. Manifestations of developmental toxicity were limited to a higher rate of skeletal alterations. The MN tests did not evidence genotoxicity or cytotoxicity. KACY caused a slightly but significantly increased frequency of SCE. Although KACY-treated rats had skeletal alterations, these apparently were not caused by a mechanism of genotoxicity. Furthermore, the same administration in adult male mice did not produce genotoxicity. Hence, KACY herein proved to be safe for rats during the period of organogenesis. Keywords: Kramecyne, Teratogenic study, Micronuclei, Sister chromatid exchang
    corecore