5 research outputs found

    Genomic analysis of Sardinian 26544/OG10 isolate of African swine fever virus

    Get PDF
    Abstract Comparative genomic analysis aims to underscore genetic assortment diversification in distinct viral isolates, to identify deletions and to carry out evolutionary studies. We sequenced the first complete genome of an ASFV p72 genotype I strain isolated from domestic pigs in Sardinia (Italy) using Next-Generation Sequence (NGS) technology. The genome is 182,906 bp long, contains 164 ORFs and has a 99.20% nucleotide identity to the L60 strain. Comparison analysis against the 16 ASFV genomes available in the database showed that 136 ORFs are present in nine ASFV isolates annotated to date. The most divergent ORFs codify for uncharacterized proteins such as X69R and DP96R, which have 51.3% and 70.4% nucleotide identity to the other isolates. A comparison between the Sardinian isolate and the avirulent isolates OURT 88/3, NHV, BA71V was also carried out. Major variations were found within the multigene families (MGFs) located in the left and right genome regions

    Evidence of Porcine Circovirus Type 2 (PCV2) Genetic Shift from PCV2b to PCV2d Genotype in Sardinia, Italy

    No full text
    Porcine Circovirus type 2 (PCV2) is the etiological agent of a disease syndrome named Porcine Circovirus disease (PCVD), representing an important threat for the pig industry. The increasing international trade of live animals and the development of intensive pig farming seem to have sustained the spreading of PCVD on a global scale. Recent classification criteria allowed the identification of nine different PCV2 genotypes (PCV2a–i). PCV2a was the first genotype detected with the highest frequency from the late 1990s to 2000, which was then superseded by PCV2b (first genotype shift). An ongoing genotype shift is now determining increasing prevalence rates of PCV2d, in replacement of PCV2b. In Italy, a complete genotype replacement was not evidenced yet. The present study was carried out on 369 samples originating from domestic pigs, free-ranging pigs, and wild boars collected in Sardinia between 2020 and 2022, with the aim to update the last survey performed on samples collected during 2009–2013. Fifty-seven complete ORF2 sequences were obtained, and the phylogenetic and network analyses evidenced that 56 out of 57 strains belong to the PCV2d genotype and only one strain to PCV2b, thus showing the occurrence of a genotype shift from PCV2b to PCV2d in Sardinia

    First Genomic Evidence of Dual African Swine Fever Virus Infection: Case Report from Recent and Historical Outbreaks in Sardinia

    No full text
    African swine fever virus (ASFV) is one of the pathogens of highest concern worldwide. Despite different virus lineages co-circulating in several areas, dual infections in the same animal have been rarely observed, suggesting that ASF superinfections are infrequent events. Here we present the first genome-wide detection and analysis of two intragenotype dual ASFV infections. The dual infections have been detected in a hunted wild boar and in a pig carcass, both infected by ASFV genotype I in Sardinia in 1984 and 2018, respectively. We characterize the genetic differences between the two sequences, their intra-host frequency, and their phylogenetic relationship among fully sequenced ASFV strains from Sardinia. Both dual infections involve pairs of closely related but different viruses that were circulating in Sardinia in the same period. The results imply that dual ASFV infections or similar ASFV strains are more common than expected, especially in ASF endemic areas, albeit difficult to detect

    First Genomic Evidence of Dual African Swine Fever Virus Infection: Case Report from Recent and Historical Outbreaks in Sardinia

    No full text
    African swine fever virus (ASFV) is one of the pathogens of highest concern worldwide. Despite different virus lineages co-circulating in several areas, dual infections in the same animal have been rarely observed, suggesting that ASF superinfections are infrequent events. Here we present the first genome-wide detection and analysis of two intragenotype dual ASFV infections. The dual infections have been detected in a hunted wild boar and in a pig carcass, both infected by ASFV genotype I in Sardinia in 1984 and 2018, respectively. We characterize the genetic differences between the two sequences, their intra-host frequency, and their phylogenetic relationship among fully sequenced ASFV strains from Sardinia. Both dual infections involve pairs of closely related but different viruses that were circulating in Sardinia in the same period. The results imply that dual ASFV infections or similar ASFV strains are more common than expected, especially in ASF endemic areas, albeit difficult to detect

    Origin, Genetic Variation and Molecular Epidemiology of SARS-CoV-2 Strains Circulating in Sardinia (Italy) during the First and Second COVID-19 Epidemic Waves

    No full text
    Understanding how geography and human mobility shape the patterns and spread of infectious diseases such as COVID-19 is key to control future epidemics. An interesting example is provided by the second wave of the COVID-19 epidemic in Europe, which was facilitated by the intense movement of tourists around the Mediterranean coast in summer 2020. The Italian island of Sardinia is a major tourist destination and is widely believed to be the origin of the second Italian wave. In this study, we characterize the genetic variation among SARS-CoV-2 strains circulating in northern Sardinia during the first and second Italian waves using both Illumina and Oxford Nanopore Technologies Next Generation Sequencing methods. Most viruses were placed into a single clade, implying that despite substantial virus inflow, most outbreaks did not spread widely. The second epidemic wave on the island was actually driven by local transmission of a single B.1.177 subclade. Phylogeographic analyses further suggest that those viral strains circulating on the island were not a relevant source for the second epidemic wave in Italy. This result, however, does not rule out the possibility of intense mixing and transmission of the virus among tourists as a major contributor to the second Italian wave
    corecore