403 research outputs found

    Mud volcanoes in onshore Sicily: a short overview

    Get PDF
    A short overview on Sicilian mud volcanoes is given. A total of 8 sites are presently known and studied in Sicily, mainly located in central–southern Sicily (Caltanissetta basin). All of these are of small dimension and sometimes associated to water pools. Methane is the main emitted gaseous phase, with the exception of the PaternĂČ site, dominated by CO2 due to its proximity to Mt. Etna. Emitted waters are of the chloride–sulphate–alkaline type, due to the dominance of NaCl as the main dissolved salt. Sicilian mud volcanoes represent a potential threat for humans but, at the same time, they are threatened by anthropic activities. The main risks are related to the damages produced by paroxysmal events, while their survival is threatened by illegal discharge of wastes, consumption of rural land and agricultural activities

    Possible Micrometeorological Anomalies Induced by Volcanic Activity Recorded at Stromboli Island (Aeolian Archipelago, Italy)

    Get PDF
    Hourly values of atmospheric pressure and air temperature have been acquired at the top of two volcanic islands, Stromboli and Salina in the Aeolian Archipelago (Italy), very similar in height and morphology but completely different with regard to their volcanic activity state: the former is permanently active, whereas the latter is extinguished. During the last four years Stromboli experienced normal activity, volcanic unrests, and an effusive eruption (August–November 2014).The comparative analysis of the recorded data, both in the time and frequency domains, evidenced a peculiar micrometeorological regime at Stromboli, more turbulent during unrests with respect to the quieter periods, but showing an apparent paradox during eruptions, characterized by a lower atmospheric turbulence. These observations suggest that the studied volcanic-micrometeorological system is chaotic, due to contemporary opposite transients generated in the atmosphere by volcanic activity changes, and that micrometeorological conditions in volcanic areas are controlled both by exogenous processes and volcanic activity

    Geomorphological and geochemical characterization of the 11 August 2008 mud volcano eruption at S. Barbara village (Sicily, Italy) and its possible relationship with seismic activity

    Get PDF
    On 11 August 2008 a paroxysmal eruption occurred at Santa Barbara mud volcano (MV), located close to Caltanissetta, one of the most densely populated cities of Sicily (Italy). An associated minor event took place on August 2009. Both the events caused severe damage to civil infrastructures located within a range of about 2 km from the eruptive vent. Geomorphological, geochemical, and seismological investigations were carried out for framing the events in the appropriate geodynamic context. Geomorphological surveys recognized, in the immediate surrounding of the main emission point, two different families of processes and landforms: (i) ground deformations and (ii) changes in morphology and number of the fluid emitting vents. These processes were associated to a wider network of fractures, seemingly generated by the shock wave produced by the gas blast that occurred at the main paroxysm. Geochemical characterization allowed an estimation of the source of the fluids, or at least their last standing, at about 3 km depth. Finally, the close time relationships observed between anomalous increments of seismic activity and the two main paroxysmal events accounted for a possible common trigger for both the phenomena, even with different timing due to the very different initial conditions and characteristics of the two processes, i.e. seismogenesis and gas overloading

    The use of non-invasive field techniques in the study of small topographically closed lakes: two case studies in Sicily (Italy)

    Get PDF
    Small endhoreic (topografically closed) lakes represent a little percentage of continental waters but, in arid or sub-arid regions, they develop special ecosystems potentially prone to ecological involution due to climatic changes. The mandatory use of light, non-invasive field techniques is often required, especially in protected areas. In the present work the use of non-invasive techniques like GPS−based bathymetric and photographic surveys have been applied to the study of two lakes, Specchio di Venere and Sfondato (Sicily, southern Italy), both natural reserves. The comparison between historical surveys and modern GPS−based bathymetries highlighted the difficulty of using the former for the reconstruction of climatic-induced variations due to the low number of measurements (spatial aliasing). In particular, at the intracaldera Lake Specchio di Venere, a high resolution survey gave new insights into a peculiar geo-ecosystem whose evolution is driven by both volcanic phenomena and biomineralization processes. On the contrary, the morphology of Lake Sfondato floor is much more simple and driven only by the superimposition of a detrital sedimentation on the initial collapse that generated the lake. The comparison betweem direct measurements and estimated changes of lake level, carried out between February 2008 and October 2009 variations, allowed us to test different hypotheses of hydrological balances, leading to opposite conclusions with respect to previous studies and remarking the fundamental importance of direct measurements in the validation of theoretical hydrological models

    Geomorphological and geochemical characterization of the August 11, 2008 mud volcano eruption at S. Barbara village (Sicily, Italy) and its possible relationship with seismic activity

    Get PDF
    On August 11, 2008 a paroxysmal eruption occurred at Santa Barbara mud volcano (MV), located close to Caltanissetta, one of the most densely populated cities of Sicily (Italy). An associated minor event took place on August, 2009. Both the events caused severe damages to civil infrastructures located within a range of about 2 km from the eruptive vent. Geomorphological, geochemical and seismological investigations were carried out for framing the events in the appropriate geodynamic context. Geomorphological surveys recognized, in the immediate surrounding of the main emission point, two different families of processes and landforms: ground deformations and changes in morphology and number of the fluid emitting vents. These processes were associated to a wider network of fractures, seemingly generated by the shock wave produced by the gas blast occurred at the main paroxysm. Geochemical characterization allowed to estimate the source of the fluids, or at least their last standing, at about 3 km depth. Finally, the close time relationships observed between anomalous increments of seismic activity and the two main paroxysmal events, accounted for a common possible trigger for both the phenomena, even if with a different timing due to the very different initial conditions and characteristics of the two processes, i.e. seismogenesis and gas overloading

    Relationship between surface temperatures and seismic activity at Vulcano, Aeolian Island (Italy)

    Get PDF
    Time-series acquired during last years by surface monitoring parameters are compared, and the results are discussed, following a theoretical approach. Surface parameters are fluid temperature, soil temperatures and seismic activity at La Fossa of Vulcano. Discussed periods are 1998 and from 2004 to 2007, when time relationship between changes of the heat flow from the ground and seismic activity, resulted worth noting. Earthquakes originating in the area of Vulcano are associated with both fracturing and degassing mechanisms. The formers are related to the activity of tectonic structures; while the latter are connected to fluid dynamics within the interior of the volcanic apparatus. In November 1998 seismic activity at La Fossa sharply increased: Five events were registered, with seismic signals of typical faulting earthquakes, triggered by mechanism of shear fracturing and focal depths ranging 1-4 km. Fumaroles temperatures, recorded by continuous monitoring system of INGV - Palermo, showed a growing trend since October to November 1998, highlighting a big increase of heat transfer during the period, and also the soil temperature, out of the fumaroles field showed a marked increase. Fumaroles temperatures heralded the increase of heat and energy flow during a pre-seismic period of about 1 month. The transient variation of surface release reflect an excited state of the system and may have many different causes, not directly related to the magma. Indeed, stress drops generated by small fracturing earthquakes, introduce a significant perturbation in the system resulting in a relevant production of mass and energy flow. Until these flows counteract every stress gradient, they support stationary state of the system. The observed time relationships only allow a qualitative discussion about cause and effects, but doesn’t allow any quantitative evaluation. Pressure transients generate anomalies (flows of matter, differential in heat flows, chemical reaction rates) whose time frame is specific, depending on many possible processes and path-ways. Fluid phases, along fumarolic conduits, reach the surface faster than the co-genetic earthquake, as the earthquake is embedded in a strain transient that broadly exceeds the time-space frame of the seismic transient (Lomnitz, 1994). On the other hand, in a volcano-tectonic context, different energy flows can either be a cause, either an effect of perturbation, depending on depth of their primary source. Thus, in some instances the strain transient related to local earthquakes produces anomalous chemical flows, while, in other instances the local seismic activity may be produced by chemical flows from the magmatic source. Following a period of lower energy release, other 3 anomalous periods were observed from November 2004, either in the seismic release and in the surface heat flow, even out from fumaroles. So far, the monitored sites resulted very sensitive to minor perturbations of the system. The comparative analysis of different time-series supplies information related to perturbations of the state variables, useful to verify conceptual framework and to better define “classical” and “new” monitoring techniques for volcanic, as well as seismic surveillance

    Anthropogenic sinkholes in the Marsala area (western Sicily) linked to underground quarries

    Get PDF
    Marsala territory (western Sicily) is characterized by the presence of a Lower Pleistocene (Calabrian) calcarenite succession (Marsala Calcarenite Fm). It can be divided into three lithofacies that show the regressive evolution of the depositional system: a) coarse to fine yellow bio- and lithoclastic calcarenites, b) sands, and c) gray sandy clays. At least 80 m-thick, this succession gently dips (5-10) towards the south and the south-west. At some locations the Marsala Calcarenite is covered by Middle and Upper Pleistocene marine terraced deposits. Since the Roman period, due to the great abundance of calcarenite rocks, and to the facility of extraction, the Marsala area has been characterized by a high number of quarries for the extraction of this building materials. Many of them were excavated underground, at depth varying from a few meters to about 25 m, and are arranged in one or two levels, following the galleries and pillars excavation technique. With time, the underground quarries have been progressively abandoned for the decay of the physical and mechanical properties of the calcarenite rock mass, the interaction with the groundwater, the high costs of extraction, and the dangers and difficulties encountered in working underground. Since the 1960’s the quarries have been affected by instability processes, visible through collapses and deformations of vaults and pillars. These phenomena often propagate upward reaching the topographic surface and forming sinkholes which affect and severely damage the built-up area. In particular, two case studies of sinkholes related to different underground quarries will be analyzed in this paper. The aim is to provide a description of the most significant processes and factors responsible of the instability processes based on field surveys, as well as to understand the generation mechanisms of these anthropogenic sinkholes by means of numerical modeling, based on rock laboratory testing data, that represents in these cases a remarkable tool for the investigation of the cause-effect relationships, as already performed in other areas of Italy

    Discrimination between effects induced by microbial activity and water-rock interactions under hydrothermal conditions according to REE behaviour

    Get PDF
    Rare earth elements (REE) were investigated in siliceous stromatolites forming in the Specchio di Venere Lake on Pantelleria Island. Chondrite-normalised patterns show significant La enrichments and Eu depletions suggesting that fluids involved in stromatolite growth experienced strong rock-water interactions under hydrothermal conditions. At the same time, enrichments in heavy REE (HREE) with respect to intermediate REE (MREE) suggest that hydrothermal fluids interacted with microbial mats during deposition of the stromatolites. The above-mentioned features suggest that rock-water interactions and bacterial activity were simultaneously recorded in the REE patterns of stromatolites, and can be discriminated in terms of amplitudes of the La anomaly, and the HREE/MREE ratio

    A landscape approach in the isotopic modeling of natural precipitations: two cases in Mediterranean mountain areas

    Get PDF
    The present paper proposes a method to simplify the very complex isotopic fractionation processes occurring during the water cycle. The method is constrained by a relatively small number of variables, with the precision needed in hydrological applications. After a theoretical introduction on the adopted interpolation criteria, two cases in the Mediterranean are presented. In both cases the evaluation of the “geometric complexity” of the systems appears to be the best tool to produce reliable isotopic models. If the complexity is low, it is apparently easier to fit different models; on the contrary the higher the complexity is, more difficult it is to find a reliable model but, at the same time, more difficult it is to find effective alternative models
    • 

    corecore