214 research outputs found

    The Circle of Meaning: From Translation to Paraphrasing and Back

    Get PDF
    The preservation of meaning between inputs and outputs is perhaps the most ambitious and, often, the most elusive goal of systems that attempt to process natural language. Nowhere is this goal of more obvious importance than for the tasks of machine translation and paraphrase generation. Preserving meaning between the input and the output is paramount for both, the monolingual vs bilingual distinction notwithstanding. In this thesis, I present a novel, symbiotic relationship between these two tasks that I term the "circle of meaning''. Today's statistical machine translation (SMT) systems require high quality human translations for parameter tuning, in addition to large bi-texts for learning the translation units. This parameter tuning usually involves generating translations at different points in the parameter space and obtaining feedback against human-authored reference translations as to how good the translations. This feedback then dictates what point in the parameter space should be explored next. To measure this feedback, it is generally considered wise to have multiple (usually 4) reference translations to avoid unfair penalization of translation hypotheses which could easily happen given the large number of ways in which a sentence can be translated from one language to another. However, this reliance on multiple reference translations creates a problem since they are labor intensive and expensive to obtain. Therefore, most current MT datasets only contain a single reference. This leads to the problem of reference sparsity---the primary open problem that I address in this dissertation---one that has a serious effect on the SMT parameter tuning process. Bannard and Callison-Burch (2005) were the first to provide a practical connection between phrase-based statistical machine translation and paraphrase generation. However, their technique is restricted to generating phrasal paraphrases. I build upon their approach and augment a phrasal paraphrase extractor into a sentential paraphraser with extremely broad coverage. The novelty in this augmentation lies in the further strengthening of the connection between statistical machine translation and paraphrase generation; whereas Bannard and Callison-Burch only relied on SMT machinery to extract phrasal paraphrase rules and stopped there, I take it a few steps further and build a full English-to-English SMT system. This system can, as expected, ``translate'' any English input sentence into a new English sentence with the same degree of meaning preservation that exists in a bilingual SMT system. In fact, being a state-of-the-art SMT system, it is able to generate n-best "translations" for any given input sentence. This sentential paraphraser, built almost entirely from existing SMT machinery, represents the first 180 degrees of the circle of meaning. To complete the circle, I describe a novel connection in the other direction. I claim that the sentential paraphraser, once built in this fashion, can provide a solution to the reference sparsity problem and, hence, be used to improve the performance a bilingual SMT system. I discuss two different instantiations of the sentential paraphraser and show several results that provide empirical validation for this connection

    Partially Punctual Metric Temporal Logic is Decidable

    Full text link
    Metric Temporal Logic \mathsf{MTL}[\until_I,\since_I] is one of the most studied real time logics. It exhibits considerable diversity in expressiveness and decidability properties based on the permitted set of modalities and the nature of time interval constraints II. Henzinger et al., in their seminal paper showed that the non-punctual fragment of MTL\mathsf{MTL} called MITL\mathsf{MITL} is decidable. In this paper, we sharpen this decidability result by showing that the partially punctual fragment of MTL\mathsf{MTL} (denoted PMTL\mathsf{PMTL}) is decidable over strictly monotonic finite point wise time. In this fragment, we allow either punctual future modalities, or punctual past modalities, but never both together. We give two satisfiability preserving reductions from PMTL\mathsf{PMTL} to the decidable logic \mathsf{MTL}[\until_I]. The first reduction uses simple projections, while the second reduction uses a novel technique of temporal projections with oversampling. We study the trade-off between the two reductions: while the second reduction allows the introduction of extra action points in the underlying model, the equisatisfiable \mathsf{MTL}[\until_I] formula obtained is exponentially succinct than the one obtained via the first reduction, where no oversampling of the underlying model is needed. We also show that PMTL\mathsf{PMTL} is strictly more expressive than the fragments \mathsf{MTL}[\until_I,\since] and \mathsf{MTL}[\until,\since_I]

    Making Metric Temporal Logic Rational

    Get PDF
    We study an extension of MTL in pointwise time with regular expression guarded modality Reg_I(re) where re is a rational expression over subformulae. We study the decidability and expressiveness of this extension (MTL+Ureg+Reg), called RegMTL, as well as its fragment SfrMTL where only star-free rational expressions are allowed. Using the technique of temporal projections, we show that RegMTL has decidable satisfiability by giving an equisatisfiable reduction to MTL. We also identify a subclass MITL+UReg of RegMTL for which our equisatisfiable reduction gives rise to formulae of MITL, yielding elementary decidability. As our second main result, we show a tight automaton-logic connection between SfrMTL and partially ordered (or very weak) 1-clock alternating timed automata

    Monus semantics in vector addition systems with states

    Full text link
    Vector addition systems with states (VASS) are a popular model for concurrent systems. However, many decision problems have prohibitively high complexity. Therefore, it is sometimes useful to consider overapproximating semantics in which these problems can be decided more efficiently. We study an overapproximation, called monus semantics, that slightly relaxes the semantics of decrements: A key property of a vector addition systems is that in order to decrement a counter, this counter must have a positive value. In contrast, our semantics allows decrements of zero-valued counters: If such a transition is executed, the counter just remains zero. It turns out that if only a subset of transitions is used with monus semantics (and the others with classical semantics), then reachability is undecidable. However, we show that if monus semantics is used throughout, reachability remains decidable. In particular, we show that reachability for VASS with monus semantics is as hard as that of classical VASS (i.e. Ackermann-hard), while the zero-reachability and coverability are easier (i.e. EXPSPACE-complete and NP-complete, respectively). We provide a comprehensive account of the complexity of the general reachability problem, reachability of zero configurations, and coverability under monus semantics. We study these problems in general VASS, two-dimensional VASS, and one-dimensional VASS, with unary and binary counter updates

    Logics Meet 1-Clock Alternating Timed Automata

    Get PDF
    This paper investigates a decidable and highly expressive real time logic QkMSO which is obtained by extending MSO[<] with guarded quantification using block of less than k metric quantifiers. The resulting logic is shown to be expressively equivalent to 1-clock ATA where loops are without clock resets, as well as, RatMTL, a powerful extension of MTL[U_I] with regular expressions. We also establish 4-variable property for QkMSO and characterize the expressive power of its 2-variable fragment. Thus, the paper presents progress towards expressively complete logics for 1-clock ATA

    Monus Semantics in Vector Addition Systems with States

    Get PDF
    Vector addition systems with states (VASS) are a popular model for concurrent systems. However, many decision problems have prohibitively high complexity. Therefore, it is sometimes useful to consider overapproximating semantics in which these problems can be decided more efficiently. We study an overapproximation, called monus semantics, that slightly relaxes the semantics of decrements: A key property of a vector addition systems is that in order to decrement a counter, this counter must have a positive value. In contrast, our semantics allows decrements of zero-valued counters: If such a transition is executed, the counter just remains zero. It turns out that if only a subset of transitions is used with monus semantics (and the others with classical semantics), then reachability is undecidable. However, we show that if monus semantics is used throughout, reachability remains decidable. In particular, we show that reachability for VASS with monus semantics is as hard as that of classical VASS (i.e. Ackermann-hard), while the zero-reachability and coverability are easier (i.e. EXPSPACE-complete and NP-complete, respectively). We provide a comprehensive account of the complexity of the general reachability problem, reachability of zero configurations, and coverability under monus semantics. We study these problems in general VASS, two-dimensional VASS, and one-dimensional VASS, with unary and binary counter updates
    • …
    corecore