172 research outputs found

    Genome-wide analysis of heterogeneous nuclear ribonucleoprotein (hnRNP) binding to HIV-1 RNA reveals a key role for hnRNP H1 in alternative viral mRNA splicing

    Get PDF
    Alternative splicing of HIV-1 mRNAs increases viral coding potential and controls the levels and timing of gene expression. HIV-1 splicing is regulated in part by heterogeneous nuclear ribonucleoproteins (hnRNPs) and their viral target sequences, which typically repress splicing when studied outside their native viral context. Here, we determined the location and extent of hnRNP binding to HIV-1 mRNAs and their impact on splicing in a native viral context. Notably, hnRNP A1, hnRNP A2, and hnRNP B1 bound to many dispersed sites across viral mRNAs. Conversely, hnRNP H1 bound to a few discrete purine-rich sequences, a finding that was mirrore

    Observation of Bose-Einstein Condensation in a Strong Synthetic Magnetic Field

    Get PDF
    Extensions of Berry's phase and the quantum Hall effect have led to the discovery of new states of matter with topological properties. Traditionally, this has been achieved using gauge fields created by magnetic fields or spin orbit interactions which couple only to charged particles. For neutral ultracold atoms, synthetic magnetic fields have been created which are strong enough to realize the Harper-Hofstadter model. Despite many proposals and major experimental efforts, so far it has not been possible to prepare the ground state of this system. Here we report the observation of Bose-Einstein condensation for the Harper-Hofstadter Hamiltonian with one-half flux quantum per lattice unit cell. The diffraction pattern of the superfluid state directly shows the momentum distribution on the wavefuction, which is gauge-dependent. It reveals both the reduced symmetry of the vector potential and the twofold degeneracy of the ground state. We explore an adiabatic many-body state preparation protocol via the Mott insulating phase and observe the superfluid ground state in a three-dimensional lattice with strong interactions.Comment: 6 pages, 5 figures. Supplement: 6 pages, 4 figure

    Establishing a distributed national research infrastructure providing bioinformatics support to life science researchers in Australia

    Get PDF
    EMBL Australia Bioinformatics Resource (EMBL-ABR) is a developing national research infrastructure, providing bioinformatics resources and support to life science and biomedical researchers in Australia. EMBL-ABR comprises 10 geographically distrib- uted national nodes with one coordinating hub, with current funding provided through Bioplatforms Australia and the University of Melbourne for its initial 2-year development phase. The EMBL-ABR mission is to: (1) increase Australia’s capacity in bioinformatics and data sciences; (2) contribute to the development of training in bioinformatics skills; (3) showcase Australian data sets at an international level and (4) enable engagement in international programs. The activities of EMBL-ABR are focussed in six key areas, aligning with comparable international initiatives such as ELIXIR, CyVerse and NIH Commons. These key areas—Tools, Data, Standards, Platforms, Compute and Training—are described in this article

    Endometrial stromal sarcoma: a population-based analysis

    Get PDF
    To determine independent prognostic factors for the survival of patients with endometrial stromal sarcoma (ESS), data were abstracted from the Surveillance, Epidemiology, and End Results (SEER) database of the National Cancer Institute from 1988 to 2003. Kaplan–Meier and Cox proportional hazards models were used for analyses. Of 831 women diagnosed with ESS, the median age was 52 years (range: 17–96 years). In total, 59.9% had stage I, 5.1% stage II, 14.9% stage III, and 20.1% had stage IV disease. Overall, 13.0, 36.1, and 34.7% presented with grades 1, 2, and 3, respectively. Patients with stage I–II vs III–IV disease had 5 years DSS of 89.3% vs 50.3% (P<0.001) and those with grades 1, 2, and 3 cancers had survivals of 91.4, 95.4, and 42.1% (P<0.001). In multivariate analysis, older patients, black race, advanced stage, higher grade, lack of primary surgery, and nodal metastasis were independent prognostic factors for poorer survival. In younger women (<50 years) with stage I–II disease, ovarian-sparing procedures did not adversely impact survival (91.9 vs 96.2%; P=0.1). Age, race, primary surgery, stage, and grade are important prognostic factors for ESS. Excellent survival in patients with grade 1 and 2 disease of all stages supports the concept that these tumors are significantly different from grade 3 tumors. Ovarian-sparing surgeries may be considered in younger patients with early-stage disease

    Critical design review: Speedfest Orange Team

    Get PDF
    A task was given to create a small, hand launchable, jet propelled hotliner to compete in the 30N class. The aircraft must not only demonstrate specific speed and efficiency characteristics, but it also must be easy and fast to assemble, reliable and desirable for purchase. The Oklahoma Sate Orange team developed such an aircraft that is marketed to be an attractive and stylish hotliner, and is able to travel at high speeds and turn fast. The Tempest, which was envisioned, designed, and built by the team is a forward swept aircraft that has a bottom mounted engine, and a inverted Y tail. The aircraft can be launched by hand or cart, and goes upwards of 200 mph. The task to fly for 4 minutes and fly pylons was completed on Speedfest day

    La Grange Comprehensive Plan 2018 - 2038

    Get PDF
    In the Fall of 2017, the City of La Grange and Texas Target Communities partnered to create a task force to represent the community. The task force was integral to the planning process, contributing the thoughts, desires, and opinions of community members—as well as their enthusiasm about La Grange’s future. This fifteen-month planning process ended in August 2018. The result of this collaboration is the La Grange Comprehensive Plan, which is the official policy guide for the community’s growth over the next twenty years.La Grange Comprehensive Plan 2018 - 2038 provides a guide for the future growth of the City. This document was developed by Texas Target Communities in partnership with the City of La Grange.Texas Target Communitie

    Akt1-associated actomyosin remodelling is required for nuclear lamina dispersal and nuclear shrinkage in epidermal terminal differentiation

    Get PDF
    Keratinocyte cornification and epidermal barrier formation are tightly controlled processes, which require complete degradation of intracellular organelles, including removal of keratinocyte nuclei. Keratinocyte nuclear destruction requires Akt1-dependent phosphorylation and degradation of the nuclear lamina protein, Lamin A/C, essential for nuclear integrity. However, the molecular mechanisms that result in complete nuclear removal and their regulation are not well defined. Post-confluent cultures of rat epidermal keratinocytes (REKs) undergo spontaneous and complete differentiation, allowing visualisation and perturbation of the differentiation process in vitro. We demonstrate that there is dispersal of phosphorylated Lamin A/C to structures throughout the cytoplasm in differentiating keratinocytes. We show that the dispersal of phosphorylated Lamin A/C is Akt1-dependent and these structures are specific for the removal of Lamin A/C from the nuclear lamina; nuclear contents and Lamin B were not present in these structures. Immunoprecipitation identified a group of functionally related Akt1 target proteins involved in Lamin A/C dispersal, including actin, which forms cytoskeletal microfilaments, Arp3, required for actin filament nucleation, and Myh9, a component of myosin IIa, a molecular motor that can translocate along actin filaments. Disruption of actin filament polymerisation, nucleation or myosin IIa activity prevented formation and dispersal of cytoplasmic Lamin A/C structures. Live imaging of keratinocytes expressing fluorescently tagged nuclear proteins showed a nuclear volume reduction step taking less than 40 min precedes final nuclear destruction. Preventing Akt1-dependent Lamin A/C phosphorylation and disrupting cytoskeletal Akt1-associated proteins prevented nuclear volume reduction. We propose keratinocyte nuclear destruction and differentiation requires myosin II activity and the actin cytoskeleton for two intermediate processes: Lamin A/C dispersal and rapid nuclear volume reduction

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore