1,119 research outputs found

    Versatile directional searches for gravitational waves with Pulsar Timing Arrays

    Get PDF
    By regularly monitoring the most stable millisecond pulsars over many years, pulsar timing arrays (PTAs) are positioned to detect and study correlations in the timing behaviour of those pulsars. Gravitational waves (GWs) from supermassive black hole binaries (SMBHBs) are an exciting potentially detectable source of such correlations. We describe a straightforward technique by which a PTA can be ‘phased-up’ to form time series of the two polarization modes of GWs coming from a particular direction of the sky. Our technique requires no assumptions regarding the time-domain behaviour of a GW signal. This method has already been used to place stringent bounds on GWs from individual SMBHBs in circular orbits. Here, we describe the methodology and demonstrate the versatility of the technique in searches for a wide variety of GW signals including bursts with unmodelled waveforms. Using the first six years of data from the Parkes Pulsar Timing Array, we conduct an all-sky search for a detectable excess of GW power from any direction. For the lines of sight to several nearby massive galaxy clusters, we carry out a more detailed search for GW bursts with memory, which are distinct signatures of SMBHB mergers. In all cases, we find that the data are consistent with noise

    Calibration of distorted wave Born approximation for electron impact excitation of Ne and Ar at incident energies below 100 eV

    Full text link
    We calibrate the distorted wave Born approximation (DWBA) for electron impact excitation processes empirically. Differential cross sections (DCS) for the excitation of the 2p53s2p^53s, 2p53p2p^53p,2p54s2p^54s, and 2p54p2p^54p configurations of Ne and the 3p54s3p^54s and 3p54p3p^54p configurations of Ar by electron impact are calculated using DWBA for incident energies between 20 and 100 eV. The calculated results are compared with the absolute experimental measurements and other theoretical results. We found that the structure of the DCS can be well reproduced by the DWBA model while the magnitude is overestimated for most cases considered here. The differences in magnitude between DWBA and experiment are used to test the calibration of DWBA such that the DWBA can be used to describe laser-induced electron impact excitation processes. These processes are involved in the non-sequential double ionization of atoms in strong laser fields.Comment: 10 pages, 8 figure

    Fine-structure effect for (e,2e) collisions

    Get PDF
    For the case of inelastic electron-atom scattering, it has been known for some time that significant spin effects may be observed even if spin-dependent forces on the projectile can be ignored. These spin effects result from the Pauli principle and this phenomenon has become known as the fine-structure effect. Recently, the question of whether or not these same types of effects should be observed for atomic ionization has been considered and the initial indications are that significant spin asymmetries can also be expected for atomic ionization if the final ion satisfies LS coupling and the final J state of the ion can be resolved. In this paper, we consider this problem for electron-impact ionization of inert gases. The theory of the fine-structure effect is presented for ionization and first-order distorted-wave results are compared with very recent experimental data

    Kelvin Modes of a fast rotating Bose-Einstein Condensate

    Full text link
    Using the concept of diffused vorticity and the formalism of rotational hydrodynamics we calculate the eigenmodes of a harmonically trapped Bose-Einstein condensate containing an array of quantized vortices. We predict the occurrence of a new branch of anomalous excitations, analogous to the Kelvin modes of the single vortex dynamics. Special attention is devoted to the excitation of the anomalous scissors mode.Comment: 7 pages, 3 figures, submitted to Phys. Rev.

    Nonlinear interference in a mean-field quantum model

    Full text link
    Using similar nonlinear stationary mean-field models for Bose-Einstein Condensation of cold atoms and interacting electrons in a Quantum Dot, we propose to describe the original many-particle ground state as a one-particle statistical mixed state of the nonlinear eigenstates whose weights are provided by the eigenstate non-orthogonality. We search for physical grounds in the interpretation of our two main results, namely, quantum-classical nonlinear transition and interference between nonlinear eigenstates.Comment: RevTeX (pdfLaTeX), 7 pages with 5 png-figures include

    An exploratory study of a NoSQL database for a clinical data repository

    Get PDF
    The need to implement a distributed Clinical Data Repository (CDR) at a healthcare facility, rose in large part due to the high volume of data and the discrepancy of their sources. Over the years, Relational Database Management Systems (RDBMS) began to present difficulties in responding to the needs of various organizations when it comes to manipulating a large amount of data and to its scalability. Therefore, it was necessary to explore other techniques to choose the appropriate technology to build the CDR. In this way, NoSQL emerged as a new type of database that is quite useful to work with multiple and different types of data. In addition, NoSQL introduces a number of user-friendly features such as a distributed, scalable, elastic and also fault tolerant system. In this way, Oracle NoSQL Database was the NoSQL solution chosen to develop this case study, using the key-value storage. This article was motivated to propose a CDR architecture based on Oracle NoSQL Database functionalities. A one-single node database was deployed for better comprehension, in order to enhance their features for future implementation.The work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope UID/CEC/00319/2019 and DSAIPA/DS/0084/2018
    corecore