8 research outputs found

    Next Generation of Electrosprayed Fibers for Tissue Regeneration

    No full text
    Electrospinning is a widely established polymer-processing technology that allows generation of fibers (in nanometer to micrometer size) that can be collected to form nonwoven structures. By choosing suitable process parameters and appropriate solvent systems, fiber size can be controlled. Since the technology allows the possibility of tailoring the mechanical properties and biological properties, there has been a significant effort to adapt the technology in tissue regeneration and drug delivery. This review focuses on recent developments in adapting this technology for tissue regeneration applications. In particular, different configurations of nozzles and collector plates are summarized from the view of cell seeding and distribution. Further developments in obtaining thick layers of tissues and thin layered membranes are discussed. Recent advances in porous structure spatial architecture parameters such as pore size, fiber size, fiber stiffness, and matrix turnover are summarized. In addition, possibility of developing simple three-dimensional models using electrosprayed fibers that can be utilized in routine cell culture studies is described

    Methods for separation of organic and pharmaceutical compounds by different polymer materials

    No full text
    corecore