1,050 research outputs found

    The ρ\rho-Geminid meteoroid stream: orbits, spectroscopic data and implications for its parent body

    Get PDF
    By using an array of high-sensitivity CCD video devices and spectrographs, the activity of meteor events from the poorly-known ρ\rho-Geminid meteoroid stream has been monitored during January 2012 and 2013. As a result of this research, the atmospheric trajectory and radiant position of 10 of these events has been obtained, but also the orbital parameters of the progenitor meteoroids and the tensile strength of these particles. The data reveal that the progenitor of this stream must be a comet. In addition, the emission spectra produced by three ρ\rho-Geminid meteors were also recorded. These are the first ρ\rho-Geminid spectra discussed in the scientific literature, and have provided clues about the chemical nature of these meteoroids and their parent body.Comment: Accepted for publication on Monthly Notices of the Royal Astronomical Society on Jan. 20, 201

    Multiwavelength observations of a bright impact flash during the January 2019 total lunar eclipse

    Get PDF
    We discuss here a lunar impact flash recorded during the total lunar eclipse that occurred on 2019 January 21, at 4h 41m 38.09 +- 0.01 s UT. This is the first time ever that an impact flash is unambiguously recorded during a lunar eclipse and discussed in the scientific literature, and the first time that lunar impact flash observations in more than two wavelengths are reported. The impact event was observed by different instruments in the framework of the MIDAS survey. It was also spotted by casual observers that were taking images of the eclipse. The flash lasted 0.28 seconds and its peak luminosity in visible band was equivalent to the brightness of a mag. 4.2 star. The projectile hit the Moon at the coordinates 29.2 +- 0.3 ^{\circ}S, 67.5 +- 0.4 ^{\circ}W. In this work we have investigated the most likely source of the projectile, and the diameter of the new crater generated by the collision has been calculated. In addition, the temperature of the lunar impact flash is derived from the multiwavelength observations. These indicate that the blackbody temperature of this flash was of about 5700 K.Comment: Accepted for publication in MNRAS on 2019 March 2

    Robotic systems for the determination of the composition of solar system materials by means of fireball spectroscopy

    Get PDF
    The operation of the automated CCD spectrographs deployed by the University of Huelva at different observatories along Spain is described. These devices are providing information about the chemical nature of meteoroids ablating in the atmosphere. In this way, relevant physico-chemical data are being obtained from the ground for materials coming from different bodies in the Solar System (mainly asteroids and comets). The spectrographs, which work in a fully autonomous way by means of software developed for this purpose, are being employed to perform a systematic fireball spectroscopic campaign since 2006. Some examples of meteor spectra obtained by these devices are also presented and discussed.The SMART project has been funded by the author of this paper and partially supported by the Spanish Ministry of Science and Innovation (project AYA2009-13227). I also thank AstroHita Foundation for its support in the establishment and operation of the automated meteor observing station located at La Hita Astronomical Observatory (La Puebla de Almoradiel, Toledo, Spain)

    Impactos de meteoroides en la Luna

    Get PDF
    Cada año, millones de partículas sólidas, llamadas meteoroides, impactan con la atmósfera de la Tierra; algunas se desintegran con el impacto, en cambio otras llegan a chocar contra la Tierra. En el año 2006, la Universidad de Huelva (UHU) implantó los primeros equipos de detección de meteoroides en la atmósfera terrestre y más tarde, también implantó un sistema automático para llevar a cabo la detección de impactos de meteoroides en la superficie de la Luna. Los meteoroides, como en la Tierra, impactan continuamente sobre la Luna, pero a diferencia de la Tierra, al carecer de atmósfera, hasta las partículas más pequeñas logran llegar a su superficie. La detección de meteoroides que impactan sobre la Luna permite obtener información adicional sobre el flujo de materia interplanetaria que impacta con nuestro planeta. Además, desde la Tierra es posible monitorizar una región mucho mayor (la superficie lunar) que la que se puede abarcar con los sistemas que se basan en la detección de meteoroides en la atmósfera terrestre. La UHU y el Instituto de Astrofísica de Andalucía (IAA-CSIC) colaboran en el proyecto MIDAS (Moon Impacts Detection and Analysis System - Sistema de Detección y Análisis de Impactos Lunares) para llevar a cabo una monitorización continua de la región no iluminada de la Luna con el fin de detectar estos impactos.Each year, millions of solid particles, called meteoroids, strike the Earth’s atmosphere, some disintegrate on impact, however others arrive to crash into Earth. In 2006, the University of Huelva (UHU) introduced the first teams to detect meteoroids in Earth’s atmosphere and later also implemented a system to perform automatic detection of meteoroid impacts on the surface of the moon. Meteoroids, as on Earth, continuously impacting on the Moon, but unlike Earth, lacking atmosphere, until the smallest particles make it to the surface. The detection of meteoroids impacting the Moon allows additional information on the flow of interplanetary matter that impacts on our planet. In addition, since the Eath is possible to monitor a much larger region (the slunar surface) than can be accommodated with systems based on the detection of meteoroids in the atmosphere. The UHU and the Instituto de Astrofisica de Andalucia (IAA-CSIC) are collaborated on the project MIDAS (Moon Impacts Detection and Analysis System) to carry out continuous monitoring of the illuminated region Moon in order to detect these impactsCada any, milions de partícules sòlides, anomenades meteoroides, impacten amb l’atmosfera de la Terra; algunes es desintegren amb l’impacte, però en canvi altres arriben a xocar contra la Terra. A l’any 2006, la Universitat de Huelva (UHU) va implantar els primers equips de detecció de meteoroides en l’atmosfera terrestre i més endavant, també va implantar un sistema automàtic per a la detecció d’impactes de meteoroides en la superfície de la Lluna. Els meteoroides, com a la Terra, impacten contínuament sobre la Lluna, però a diferència de la Terra, la manca d’atmosfera permet fins i tot a les partícules més petites poder arribar a la superfície. La detecció de meteoroides que impacten sobre la Lluna permet obtenir informació addicional sobre el flux de matèria interplanetària que impacta amb el nostre planeta. A més, des de la Terra es possible monitoritzar una regió molt més gran (la superfície lunar) que la que es pot abraçar amb els sistemes basats en la detecció de meteoroides en l’atmosfera terrestre. La UHU i l’Institut d’Astrofísica d’Andalusia (IAA-CSIC) col·laboren en el projecte MIDAS (Moon Impacts Detection and Analysis System - Sistema de Detecció i Anàlisi d’Impactes Lunars) per a realitzar una monitorització contínua de la regió no il·luminada de la Lluna amb la finalitat de detectar aquests impactes
    corecore