290 research outputs found

    Plants and Small Molecules: An Up-and-Coming Synergy

    Get PDF
    The emergence of Arabidopsis thaliana as a model system has led to a rapid and wide improvement in molecular genetics techniques for studying gene function and regulation. However, there are still several drawbacks that cannot be easily solved with molecular genetic approaches, such as the study of unfriendly species, which are of increasing agronomic interest but are not easily transformed, thus are not prone to many molecular techniques. Chemical genetics represents a methodology able to fill this gap. Chemical genetics lies between chemistry and biology and relies on small molecules to phenocopy genetic mutations addressing specific targets. Advances in recent decades have greatly improved both target specificity and activity, expanding the application of this approach to any biological process. As for classical genetics, chemical genetics also proceeds with a forward or reverse approach depending on the nature of the study. In this review, we addressed this topic in the study of plant photomorphogenesis, stress responses and epigenetic processes. We have dealt with some cases of repurposing compounds whose activity has been previously proven in human cells and, conversely, studies where plants have been a tool for the characterization of small molecules. In addition, we delved into the chemical synthesis and improvement of some of the compounds described

    Tor-Sch9 deficiency activates catabolism of the ketone body-like acetic acid to promote trehalose accumulation and longevity.

    Get PDF
    n mammals, extended periods of fasting leads to the accumulation of blood ketone bodies including acetoacetate. Here we show that similar to the conversion of leucine to acetoacetate in fasting mammals, starvation conditions induced ketone body-like acetic acid generation from leucine in S. cerevisiae. Whereas wild-type and ras2Δ cells accumulated acetic acid, long-lived tor1Δ and sch9Δ mutants rapidly depleted it through a mitochondrial acetate CoA transferase-dependent mechanism, which was essential for lifespan extension. The sch9Δ-dependent utilization of acetic acid also required coenzyme Q biosynthetic genes and promoted the accumulation of intracellular trehalose. These results indicate that Tor-Sch9 deficiency extends longevity by switching cells to an alternative metabolic mode, in which acetic acid can be utilized for the storage of stress resistance carbon sources. These effects are reminiscent of those described for ketone bodies in fasting mammals and raise the possibility that the lifespan extension caused by Tor-S6K inhibition may also involve analogous metabolic changes in higher eukaryotes

    Increased levels of RNA oxidation enhance the reversion frequency in aging pro-apoptotic yeast mutants

    Get PDF
    Despite recent advances in understanding the complexity of RNA processes, regulation of the metabolism of oxidized cellular RNAs and the mechanisms through which oxidized ribonucleotides affect mRNA translation, and consequently cell viability, are not well characterized. We show here that the level of oxidized RNAs is markedly increased in a yeast decapping Kllsm4Δ1 mutant, which accumulates mRNAs, ages much faster that the wild type strain and undergoes regulated-cell-death. We also found that in Kllsm4Δ1 cells the mutation rate increases during chronological life span indicating that the capacity to han- dle oxidized RNAs in yeast declines with aging. Lowering intracellular ROS levels by antioxidants recovers the wild- type phenotype of mutant cells, including reduced amount of oxidized RNAs and lower mutation rate. Since mRNA oxidation was reported to occur in different neurodegen- erative diseases, decapping-deficient cells may represent a useful tool for deciphering molecular mechanisms of cell response to such conditions, providing new insights into RNA modification-based pathogenesis

    Hematological and Genetic Markers in the Rational Approach to Patients With HCV Sustained Virological Response With or Without Persisting Cryoglobulinemic Vasculitis

    Get PDF
    Background and Aims: Direct-acting antivirals (DAAs) usually lead to improvement/remission of cryoglobulinemic vasculitis (CV), although symptoms may persist/recur after a sustained virological response (SVR). We evaluated hematological and genetic markers in patients with HCV-SVR vasculitis with and without persisting/recurring symptoms to early predict the CV outcome. Approach and Results: Ninety-eight patients with HCV-CV were prospectively enrolled after a DAA-induced SVR: Group A: 52 with complete clinical response; Group B: 46 with symptom maintenance/recurrence. Monoclonal B-cell lymphocytosis, t(14;18) translocation, and abnormal free light chains κ/λ ratios were detected by flow cytometry or nested-PCR or nephelometry in 4% Group A versus 17% Group B (P = 0.04) patients, 17% Group A versus 40% Group B patients (P = 0.02), and 17% Group A versus 47% Group B (P = 0.003) patients, respectively. At least 1 out of 3 clonality markers was altered/positive in 29% of Group A versus 70% of Group B patients (P < 0.0001). When available, pretherapy samples were also tested for t(14;18) translocation (detected in 12/37 [32%] Group A and 21/38 [55%] Group B) and κ/λ ratios (abnormal in 5/35 [14%] Group A and 20/38 [53%] Group B) (P = 0.0006), whereas at least one clonality marker was detected/altered in 16/37 (43%) Group A and 30/38 (79%) Group B (P = 0.002). CV-associated single-nucleotide polymorphisms were tested by real-time PCR. Among them, notch4 rs2071286 T minor allele and TT genotype showed a higher frequency in Group B versus Group A (46% vs. 29%, P = 0.01, and 17% vs. 2%, P = 0.006, respectively). Conclusions: Hematological or genetic analyses could be used to foresee the CV clinical response after DAA therapy and could be valuable to assess a rational flowchart to manage CV during follow-up

    Hyperkinetic stereotyped movements in a boy with biallelic CNTNAP2 variants

    Get PDF
    SCV was supported by a Max Planck Research Group awarded by the Max Planck Gesellschaft, a Human Frontiers Science Program Grant (RGP0058/2016), and a UKRI Future Leaders Fellowship (MR/T021985/1). MA was supported by an International Max Planck Research School (IMPRS) PhD Fellowship from the Max Planck Institute for Psycholinguistics.Background:  Heterozygous variants in CNTNAP2 have been implicated in a wide range of neurological phenotypes, including intellectual disability (ID), epilepsy, autistic spectrum disorder (ASD), and impaired language. However, heterozygous variants can also be found in unaffected individuals. Biallelic CNTNAP2 variants are rarer and cause a well-defined genetic syndrome known as CASPR2 deficiency disorder, a condition characterised by ID, early-onset refractory epilepsy, language impairment, and autistic features. Case-report : A 7-year-old boy presented with hyperkinetic stereotyped movements that started during early infancy and persisted over childhood. Abnormal movements consisted of rhythmic and repetitive shaking of the four limbs, with evident stereotypic features. Additional clinical features included ID, attention deficit-hyperactivity disorder (ADHD), ASD, and speech impairment, consistent with CASPR2 deficiency disorder. Whole-genome array comparative genomic hybridization detected a maternally inherited 0.402 Mb duplication, which involved intron 1, exon 2, and intron 2 of CNTNAP2 (c.97 +?_209-?dup). The affected region in intron 1 contains a binding site for the transcription factor FOXP2, potentially leading to abnormal CNTNAP2 expression regulation. Sanger sequencing of the coding region of CNTNAP2 also identified a paternally-inherited missense variant c.2752C > T, p.(Leu918Phe). Conclusion : This case expands the molecular and phenotypic spectrum of CASPR2 deficiency disorder, suggesting that Hyperkinetic stereotyped movements may be a rare, yet significant, clinical feature of this complex neurological disorder. Furthermore, the identification of an in-frame, largely non-coding duplication in CNTNAP2 points to a sophisticated underlying molecular mechanism, likely involving impaired FOXP2 binding.Publisher PDFPeer reviewe

    AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders

    Get PDF
    © 2019, The Author(s). AMPA receptors (AMPARs) are tetrameric ligand-gated channels made up of combinations of GluA1-4 subunits encoded by GRIA1-4 genes. GluA2 has an especially important role because, following post-transcriptional editing at the Q607 site, it renders heteromultimeric AMPARs Ca2+-impermeable, with a linear relationship between current and trans-membrane voltage. Here, we report heterozygous de novo GRIA2 mutations in 28 unrelated patients with intellectual disability (ID) and neurodevelopmental abnormalities including autism spectrum disorder (ASD), Rett syndrome-like features, and seizures or developmental epileptic encephalopathy (DEE). In functional expression studies, mutations lead to a decrease in agonist-evoked current mediated by mutant subunits compared to wild-type channels. When GluA2 subunits are co-expressed with GluA1, most GRIA2 mutations cause a decreased current amplitude and some also affect voltage rectification. Our results show that de-novo variants in GRIA2 can cause neurodevelopmental disorders, complementing evidence that other genetic causes of ID, ASD and DEE also disrupt glutamatergic synaptic transmission

    Longevity mutation in SCH9 prevents recombination errors and premature genomic instability in a Werner/Bloom model system

    Get PDF
    Werner and Bloom syndromes are human diseases characterized by premature age-related defects including elevated cancer incidence. Using a novel Saccharomyces cerevisiae model system for aging and cancer, we show that cells lacking the RecQ helicase SGS1 (WRN and BLM homologue) undergo premature age-related changes, including reduced life span under stress and calorie restriction (CR), G1 arrest defects, dedifferentiation, elevated recombination errors, and age-dependent increase in DNA mutations. Lack of SGS1 results in a 110-fold increase in gross chromosomal rearrangement frequency during aging of nondividing cells compared with that generated during the initial population expansion. This underscores the central role of aging in genomic instability. The deletion of SCH9 (homologous to AKT and S6K), but not CR, protects against the age-dependent defects in sgs1Δ by inhibiting error-prone recombination and preventing DNA damage and dedifferentiation. The conserved function of Akt/S6k homologues in lifespan regulation raises the possibility that modulation of the IGF-I–Akt–56K pathway can protect against premature aging syndromes in mammals
    corecore