33 research outputs found

    Perception of fever and management practices by parents of pediatric patients

    Get PDF
    Background: The febrile child is a common pediatric presentation in both primary care and the emergency department. An assessment of parents’ perception to recognize fever in their child, as well as management practices was the focus of this study.Methods: The study was done prospectively in which interviews were taken by researchers. One hundred and sixty four parents, whose children were less than 14 years old, had fever as one of the presenting complaints and admitted in pediatric department of  Rama medical college & research center, Kanpur, were included in this study.Results: Majority of the parents 114 (69.51%) managed the fever initially at home. Only a few parents (17.07%) correctly managed the fever by taking their children to hospital or to a qualified practitioner, rest of the parents primarily rely on local medical store or unqualified practitioner. Conclusion: Parents need to be educated, when they consult health facilities especially during vaccination visits. Decreased appetite was the most common presenting complaint along with fever in children and it should be taken as a significant factor during health education of fever for early and appropriate consultation

    Amelioration of Glucolipotoxicity-Induced Endoplasmic Reticulum Stress by a “Chemical Chaperone” in Human THP-1 Monocytes

    Get PDF
    Chronic ER stress is emerging as a trigger that imbalances a number of systemic and arterial-wall factors and promote atherosclerosis. Macrophage apoptosis within advanced atherosclerotic lesions is also known to increase the risk of atherothrombotic disease. We hypothesize that glucolipotoxicity might mediate monocyte activation and apoptosis through ER stress. Therefore, the aims of this study are (a) to investigate whether glucolipotoxicity could impose ER stress and apoptosis in THP-1 human monocytes and (b) to investigate whether 4-Phenyl butyric acid (PBA), a chemical chaperone could resist the glucolipotoxicity-induced ER stress and apoptosis. Cells subjected to either glucolipotoxicity or tunicamycin exhibited increased ROS generation, gene and protein (PERK, GRP-78, IRE1α, and CHOP) expression of ER stress markers. In addition, these cells showed increased TRPC-6 channel expression and apoptosis as revealed by DNA damage and increased caspase-3 activity. While glucolipotoxicity/tunicamycin increased oxidative stress, ER stress, mRNA expression of TRPC-6, and programmed the THP-1 monocytes towards apoptosis, all these molecular perturbations were resisted by PBA. Since ER stress is one of the underlying causes of monocyte dysfunction in diabetes and atherosclerosis, our study emphasize that chemical chaperones such as PBA could alleviate ER stress and have potential to become novel therapeutics

    Saturated Fatty Acid Activates T Cell Inflammation Through a Nicotinamide Nucleotide Transhydrogenase (NNT)-Dependent Mechanism

    Get PDF
    Circulating fatty acids (FAs) increase with obesity and can drive mitochondrial damage and inflammation. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial protein that positively regulates nicotinamide adenine dinucleotide phosphate (NADPH), a key mediator of energy transduction and redox homeostasis. The role that NNT-regulated bioenergetics play in the inflammatory response of immune cells in obesity is untested. Our objective was to determine how free fatty acids (FFAs) regulate inflammation through impacts on mitochondria and redox homeostasis of peripheral blood mononuclear cells (PBMCs). PBMCs from lean subjects were activated with a T cell-specific stimulus in the presence or absence of generally pro-inflammatory palmitate and/or non-inflammatory oleate. Palmitate decreased immune cell expression of NNT, NADPH, and anti-oxidant glutathione, but increased reactive oxygen and proinflammatory Th17 cytokines. Oleate had no effect on these outcomes. Genetic inhibition of NNT recapitulated the effects of palmitate. PBMCs from obese (BMI \u3e 30) compared to lean subjects had lower NNT and glutathione expression, and higher Th17 cytokine expression, none of which were changed by exogenous palmitate. Our data identify NNT as a palmitate-regulated rheostat of redox balance that regulates immune cell function in obesity and suggest that dietary or therapeutic strategies aimed at increasing NNT expression may restore redox balance to ameliorate obesity-associated inflammation

    Saturated Fatty Acid Activates T Cell Inflammation Through a Nicotinamide Nucleotide Transhydrogenase (NNT)-Dependent Mechanism

    Get PDF
    Circulating fatty acids (FAs) increase with obesity and can drive mitochondrial damage and inflammation. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial protein that positively regulates nicotinamide adenine dinucleotide phosphate (NADPH), a key mediator of energy transduction and redox homeostasis. The role that NNT-regulated bioenergetics play in the inflammatory response of immune cells in obesity is untested. Our objective was to determine how free fatty acids (FFAs) regulate inflammation through impacts on mitochondria and redox homeostasis of peripheral blood mononuclear cells (PBMCs). PBMCs from lean subjects were activated with a T cell-specific stimulus in the presence or absence of generally pro-inflammatory palmitate and/or non-inflammatory oleate. Palmitate decreased immune cell expression of NNT, NADPH, and anti-oxidant glutathione, but increased reactive oxygen and proinflammatory Th17 cytokines. Oleate had no effect on these outcomes. Genetic inhibition of NNT recapitulated the effects of palmitate. PBMCs from obese (BMI \u3e30) compared to lean subjects had lower NNT and glutathione expression, and higher Th17 cytokine expression, none of which were changed by exogenous palmitate. Our data identify NNT as a palmitate-regulated rheostat of redox balance that regulates immune cell function in obesity and suggest that dietary or therapeutic strategies aimed at increasing NNT expression may restore redox balance to ameliorate obesity-associated inflammation

    Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis.

    Get PDF
    Autophagy has vasculoprotective roles, but whether and how it regulates lymphatic endothelial cells (LEC) homeostasis and lymphangiogenesis is unknown. Here, we show that genetic deficiency of autophagy in LEC impairs responses to VEGF-C and injury-driven corneal lymphangiogenesis. Autophagy loss in LEC compromises the expression of main effectors of LEC identity, like VEGFR3, affects mitochondrial dynamics and causes an accumulation of lipid droplets (LDs) in vitro and in vivo. When lipophagy is impaired, mitochondrial ATP production, fatty acid oxidation, acetyl-CoA/CoA ratio and expression of lymphangiogenic PROX1 target genes are dwindled. Enforcing mitochondria fusion by silencing dynamin-related-protein 1 (DRP1) in autophagy-deficient LEC fails to restore LDs turnover and lymphatic gene expression, whereas supplementing the fatty acid precursor acetate rescues VEGFR3 levels and signaling, and lymphangiogenesis in LEC-Atg5-/- mice. Our findings reveal that lipophagy in LEC by supporting FAO, preserves a mitochondrial-PROX1 gene expression circuit that safeguards LEC responsiveness to lymphangiogenic mediators and lymphangiogenesis.We thank K. Rillaerts, J. Souffreau, and A. Bouche, for expert technical support and Dr. A. Luttun and Dr. A. Zijsen for sharing tools and advices. P.A. is supported by grants from the Flemish Research Foundation (FWO-Vlaanderen; G076617N, G049817N, G070115N), the EOS MetaNiche consortium N degrees 40007532, Stichting tegen Kanker (FAF-F/2018/1252) and the iBOF/21/053 ATLANTIS consortium with G.B. D.H. is the recipient of an FWO Doctoral Fellowship from the Flemish Research Foundation (FWO-Vlaanderen, 1186019N), Belgium. M.B. is supported by the `Fonds voor Wetenschappelijk Onderzoek' (FWO). K.J. is the recipient of an FWO Postdoctoral Fellowship from the Flemish Research Foundation (FWO-Vlaanderen). P.C. is supported by Methusalem funding by the Flemish government, and by an ERC Advanced Research Grant (EU-ERC269073).S

    Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation

    Get PDF
    Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes
    corecore