10 research outputs found

    2D DIGE analysis of maternal plasma for potential biomarkers of Down Syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prenatal screening for Down Syndrome (DS) would benefit from an increased number of biomarkers to improve sensitivity and specificity. Improving sensitivity and specificity would decrease the need for potentially risky invasive diagnostic procedures.</p> <p>Results</p> <p>We have performed an in depth two-dimensional difference gel electrophoresis (2D DIGE) study to identify potential biomarkers. We have used maternal plasma samples obtained from first and second trimesters from mothers carrying DS affected fetuses compared with mothers carrying normal fetuses. Plasma samples were albumin/IgG depleted and expanded pH ranges of pH 4.5 - 5.5, pH 5.3 - 6.5 and pH 6 - 9 were used for two-dimensional gel electrophoresis (2DE). We found no differentially expressed proteins in the first trimester between the two groups. Significant up-regulation of ceruloplasmin, inter-alpha-trypsin inhibitor heavy chain H4, complement proteins C1s subcomponent, C4-A, C5, and C9 and kininogen 1 were detected in the second trimester in maternal plasma samples where a DS affected fetus was being carried. However, ceruloplasmin could not be confirmed as being consistently up-regulated in DS affected pregnancies by Western blotting.</p> <p>Conclusions</p> <p>Despite the in depth 2DE approach used in this study the results underline the deficiencies of gel-based proteomics for detection of plasma biomarkers. Gel-free approaches may be more productive to increase the number of plasma biomarkers for DS for non-invasive prenatal screening and diagnosis.</p

    Post-genomics studies and their application to non-invasive prenatal diagnosis

    No full text
    Non-invasive prenatal diagnosis (NIPD) offers the opportunity to eliminate completely the risky procedures of amniocentesis and chorionic villus sampling. The development of NIPD tests has largely centred around the isolation and analysis of fetal cells in the maternal circulation and the analysis of free fetal DNA in maternal plasma. Both of these techniques offer difficult technical challenges, and at the current moment in time the use of free fetal DNA is the simplest and most effective method of defining paternally inherited fetal genes for diagnosis. Post-genomics technologies that explore the proteins (proteomics) and transcripts (transcriptomics) released by the placenta into the maternal circulation offer new opportunities to identify genes and their protein products that are key diagnostic markers of disease (in particular Down syndrome), and might replace the current screening markers in use for prediction of risk of Down syndrome. In the ideal situation, these markers are sufficiently diagnostic not to require invasive sampling of fetal genetic material. Post-genomics techniques might also offer better opportunities for defining fetal cell-specific markers that might enhance their isolation from maternal blood samples. This review describes progress in these studies, particularly those funded by the Special Non-invasive Advances in Fetal and Neonatal Evaluation (SAFE) Network of Excellence. © 2008

    Rapid RHD Zygosity Determination Using Digital PCR.

    Get PDF
    BACKGROUND: Paternal zygosity testing is used for determining homo- or hemizygosity of RHD in pregnancies that are at a risk of hemolytic disease of the fetus and newborn. At present, this is achieved by using real-time PCR or the Rhesus box PCR, which can be difficult to interpret and unreliable, particularly for black African populations. METHODS: DNA samples extracted from 58 blood donors were analyzed using 2 multiplex reactions for RHD-specific targets against a reference (AGO1)(2) to determine gene dosage by digital PCR. Results were compared with serological data, and the correct genotype for 2 discordant results was determined by long-range PCR, next-generation sequencing, and conventional Sanger sequencing. RESULTS: The results showed clear and reliable determination of RHD zygosity using digital PCR and revealed that 4 samples did not match the serologically predicted genotype. Sanger sequencing and long-range PCR (LR-PCR) followed by next-generation sequencing revealed that the correct genotypes for samples 729M and 351D, which were serologically typed as R1R2 (DCe/DcE), were R2r\u27 (DcE/dCe) for 729M and R1r (DCe/dcE), R0r(y) (Dce/dCE), or RZr (DCE/dce) for 351D, in concordance with the digital PCR data. CONCLUSIONS: Digital PCR provides a highly accurate method to rapidly define blood group zygosity and has clinical application in the analysis of Rh phenotyped or genotyped samples. The vast majority of current blood group genotyping platforms are not designed to define zygosity, and thus, this technique may be used to define paternal RH zygosity in pregnancies that are at a risk of hemolytic disease of the fetus and newborn and can distinguish between homo- and hemizygous RHD-positive individuals

    RHD and RHCE variant and zygosity genotyping via multiplex ligation-dependent probe amplification

    No full text
    The presence of a D variant may hamper correct serologic D typing, which may result in D immunization. D variants can be determined via RHD genotyping. However, a convenient single assay to identify D variants is still lacking. We developed and evaluated a multiplex ligation-dependent probe amplification (MLPA) assay to determine clinically relevant RHD and RHCE variant alleles and RHD zygosity. We analyzed 236 cases (73 normal and 163 selected samples) with the RH-MLPA assay, which is able to determine 79 RHD and 17 RHCE variant alleles and RHD zygosity. To confirm the results, mutations were verified by RHD and/or RHCE exon-specific sequencing and RHD zygosity was verified by quantitative real-time polymerase chain reaction (PCR) for 18 cases. In 99% of the cases, the RH-MLPA assay correctly determined whether a person carried only wild-type RHD and RHCE alleles (n = 69) or (a) variant RHD allele(s) and/or (a) variant RHCE allele(s) (n = 164). In only three cases, including two new RHD variant alleles, the variant allele was not identified, due to lack of detecting probes. These were RHD*DCS2, a new partial RHD allele, RHD*525T (Phe175Leu), and a new D- null allele, RHD*443G (Thr148Arg). All RHD (n = 175) and RHCE variant alleles (n = 79) indicated by the RH-MLPA assay were confirmed by sequencing. RHD zygosity was confirmed by quantitative PCR. Two hematopoietic chimeras were recognized. The RH-MLPA genotyping assay is a fast, easy, and reliable method to determine almost all clinically relevant RHD and RHCE variant alleles, RHD zygosity, and RHD+/RHD- chimeras in blood donors, blood recipients, and pregnant wome

    4.1R-deficient human red blood cells have altered phosphatidylserine exposure pathways and are deficient in CD44 and CD47 glycoproteins

    No full text
    Phosphatidylserine exposure on the surface of the red cell membrane initiates the process of eryptosis, the red cell death program. The 4.1R protein is a phosphatidylserine binding protein. In this article, the authors demonstrate that erythrocytes from two patients with 4.1R deficiency show alterations of other proteins of the 4.1 multicomplex such as CD44 and CD47 and significantly increased phosphatidylserine exposure, suggesting a role for 4.1 protein in a signaling pathway relevant for red cell turnover

    The Bloodgen Project of the European Union, 2003-2009

    No full text
    The Bloodgen project was funded by the European Commission between 2003 and 2006, and involved academic blood centres, universities, and Progenika Biopharma S. A., a commercial supplier of genotyping platforms that incorporate glass arrays. The project has led to the development of a commercially available product, BLOODchip, that can be used to comprehensively genotype an individual for all clinically significant blood groups. The intention of making this system available is that blood services and perhaps even hospital blood banks would be able to obtain extended information concerning the blood group of routine blood donors and vulnerable patient groups. This may be of significant use in the current management of multi-transfused patients who become alloimmunised due to incomplete matching of blood groups. In the future it can be envisaged that better matching of donor-patient blood could be achieved by comprehensive genotyping of every blood donor, especially regular ones. This situation could even be extended to genotyping every individual at birth, which may prove to have significant long-term health economic benefits as it may be coupled with detection of inborn errors of metabolism
    corecore