5 research outputs found

    Potent Inhibition of Zika Virus Replication by Aurintricarboxylic Acid

    Get PDF
    Zika virus (ZIKV) is one of the recently emerging vector-borne viruses in humans and is responsible for severe congenital abnormalities such as microcephaly in the Western Hemisphere. Currently, only a few vaccine candidates and therapeutic drugs are being developed for the treatment of ZIKV infections, and as of yet none are commercially available. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antimicrobial and antiviral activity. In this study, we evaluated ATA as a potential antiviral drug against ZIKV replication. The antiviral activity of ATA against ZIKV replication in vitro showed median inhibitory concentrations (IC50) of 13.87 ± 1.09 ΌM and 33.33 ± 1.13 ΌM in Vero and A549 cells, respectively; without showing any cytotoxic effect in both cell lines (median cytotoxic concentration (CC50) > 1,000 ΌM). Moreover, ATA protected both cell types from ZIKV-induced cytopathic effect (CPE) and apoptosis in a time- and concentration-dependent manner. In addition, pre-treatment of Vero cells with ATA for up to 72 h also resulted in effective suppression of ZIKV replication with similar IC50. Importantly, the inhibitory effect of ATA on ZIKV infection was effective against strains of the African and Asian/American lineages, indicating that this inhibitory effect was not strain dependent. Overall, these results demonstrate that ATA has potent inhibitory activity against ZIKV replication and may be considered as a potential anti-ZIKV therapy for future clinical evaluation

    Transkingdom Analysis of the Female Reproductive Tract Reveals Bacteriophages form Communities

    Get PDF
    The female reproductive tract (FRT) microbiome plays a vital role in maintaining vaginal health. Viruses are key regulators of other microbial ecosystems, but little is known about how the FRT viruses (virome), particularly bacteriophages that comprise the phageome, impact FRT health and dysbiosis. We hypothesize that bacterial vaginosis (BV) is associated with altered FRT phageome diversity, transkingdom interplay, and bacteriophage discriminate taxa. Here, we conducted a retrospective, longitudinal analysis of vaginal swabs collected from 54 BV-positive and 46 BV-negative South African women. Bacteriome analysis revealed samples clustered into five distinct bacterial community groups (CGs), and further, bacterial alpha diversity was significantly associated with BV. Virome analysis on a subset of baseline samples showed FRT bacteriophages clustering into novel viral state types (VSTs), a viral community clustering system based on virome composition and abundance. Distinct BV bacteriophage signatures included increased alpha diversity along with discriminant Bacillus, Burkholderia, and Escherichia bacteriophages. Bacteriophage-bacteria transkingdom associations were also identified between Bacillus and Burkholderia viruses and BV-associated bacteria, providing key insights for future studies elucidating the transkingdom interactions driving BV-associated microbiome perturbations. In this cohort, bacteriophage-bacterial associations suggest complex interactions, which may play a role in the establishment and maintenance of BV

    Lung Megakaryocytes are Immune Modulatory Cells that Present Antigen to CD4+ T cells.

    Get PDF
    Although platelets are the cellular mediators of thrombosis, they are also immune cells. Platelets interact both directly and indirectly with immune cells, impacting their activation and differentiation, as well as all phases of the immune response. Megakaryocytes (Mks) are the cell source of circulating platelets, and until recently Mks were typically only considered bone marrow–resident (BM-resident) cells. However, platelet-producing Mks also reside in the lung, and lung Mks express greater levels of immune molecules compared with BM Mks. We therefore sought to define the immune functions of lung Mks. Using single-cell RNA sequencing of BM and lung myeloid-enriched cells, we found that lung Mks, which we term MkL, had gene expression patterns that are similar to antigen-presenting cells. This was confirmed using imaging and conventional flow cytometry. The immune phenotype of Mks was plastic and driven by the tissue immune environment, as evidenced by BM Mks having an MkL-like phenotype under the influence of pathogen receptor challenge and lung-associated immune molecules, such as IL-33. Our in vitro and in vivo assays demonstrated that MkL internalized and processed both antigenic proteins and bacterial pathogens. Furthermore, MkL induced CD4+ T cell activation in an MHC II–dependent manner both in vitro and in vivo. These data indicated that MkL had key immune regulatory roles dictated in part by the tissue environment.pre-print236 K

    Organization and function of tension-dependent complexes at adherens junctions.

    No full text
    Adherens junctions provide attachments between neighboring epithelial cells and a physical link to the cytoskeleton, which enables them to sense and transmit forces and to initiate biomechanical signaling. Examination of the Ajuba LIM protein Jub i

    Potent inhibition of Zika virus replication by aurintricarboxylic acid

    No full text
    © 2019 Park, Ávila-PĂ©rez, Madere, Hilimire, Nogales, AlmazĂĄn and MartĂ­nez-Sobrido.Zika virus (ZIKV) is one of the recently emerging vector-borne viruses in humans and is responsible for severe congenital abnormalities such as microcephaly in the Western Hemisphere. Currently, only a few vaccine candidates and therapeutic drugs are being developed for the treatment of ZIKV infections, and as of yet none are commercially available. The polyanionic aromatic compound aurintricarboxylic acid (ATA) has been shown to have a broad-spectrum antimicrobial and antiviral activity. In this study, we evaluated ATA as a potential antiviral drug against ZIKV replication. The antiviral activity of ATA against ZIKV replication in vitro showed median inhibitory concentrations (IC50) of 13.87 ± 1.09 ÎŒM and 33.33 ± 1.13 ÎŒM in Vero and A549 cells, respectively; without showing any cytotoxic effect in both cell lines (median cytotoxic concentration (CC50) > 1,000 ÎŒM). Moreover, ATA protected both cell types from ZIKV-induced cytopathic effect (CPE) and apoptosis in a time- and concentration-dependent manner. In addition, pre-treatment of Vero cells with ATA for up to 72 h also resulted in effective suppression of ZIKV replication with similar IC50. Importantly, the inhibitory effect of ATA on ZIKV infection was effective against strains of the African and Asian/American lineages, indicating that this inhibitory effect was not strain dependent. Overall, these results demonstrate that ATA has potent inhibitory activity against ZIKV replication and may be considered as a potential anti-ZIKV therapy for future clinical evaluation.This work was supported in part by the National Institutes of Health (NIH) grant 1R21AI130500 to LM-S and FA
    corecore