9 research outputs found

    Reuse-based Online Models for Caches

    No full text
    We develop a reuse distance/stack distance based analytical modeling framework for efficient, online prediction of cache performance for a range of cache configurations and replacement policies LRU, PLRU, RANDOM, NMRU. Our framework unifies existing cache miss rate prediction techniques such as Smith’s associativity model, Poisson variants, and hardware way-counter based schemes. We also show how to adapt LRU way-counters to work when the number of sets in the cache changes. As an example application, we demonstrate how results from our models can be used to select, based on workload access characteristics, last-level cache configurations that aim to minimize energy-delay product. Categories andSubjectDescriptor

    Additional file 6: Figure S6. of Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing

    No full text
    Schematic of the experiment used to measure adapter contamination and multiplexed capture index hopping. Replicate libraries were prepared using 16 unique dual-matched UMI adapters and enriched with the IDT xGen AML Cancer Panel in pools of 1, 4, 8, and 16. Each multiplexing experiment was sequenced on separate Illumina NextSeq runs. (PDF 819 kb

    Additional file 10: Figure S10. of Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing

    No full text
    Mutation-specific thresholds provide additional improvements to calling accuracy. (a) Number of false positives from 8-oxoguanine errors are found at low frequencies. (b) Increased minimum variant allele frequency thresholds for 8-oxoguanine mutations improves the positive predictive value (PPV) for rare variants without reducing sensitivity. (PDF 168 kb
    corecore