74 research outputs found

    Are Quasar Jets Matter or Poynting Flux Dominated?

    Full text link
    If quasar jets are accelerated by magnetic fields but terminate as matter dominated, where and how does the transition occur between the Poynting-dominated and matter-dominated regimes? To address this question, we study constraints which are imposed on the jet structure by observations at different spatial scales. We demonstrate that observational data are consistent with a scenario where the acceleration of a jet occurs within 10^{3-4} R_g. In this picture, the non-thermal flares -- important defining attributes of the blazar phenomenon - are produced by strong shocks formed in the region where the jet inertia becomes dominated by matter. Such shocks may be formed due to collisions between the portions of a jet accelerated to different velocities, and the acceleration differentiation is very likely to be related to global MHD instabilities.Comment: to appear in "Astrophysical Sources of High Energy Particles and Radiation", AIP Proceedings Series, eds. T. Bulik, G. Madejski, and B. Rudak (20-24 June 2005, Torun, Poland

    On the origin of X-ray spectra in luminous blazars

    Get PDF
    Gamma-ray luminosities of some quasar-associated blazars imply jet powers reaching values comparable to the accretion power even if assuming very strong Doppler boosting and very high efficiency of gamma-ray production. With much lower radiative efficiencies of protons than of electrons, and the recent reports of very strong coupling of electrons with shock-heated protons indicated by Particle-in-Cell (PIC) simulations, the leptonic models seem to be strongly favored over the hadronic ones. However, the electron-proton coupling combined with the ERC (External-Radiation-Compton) models of gamma-ray production in leptonic models predict extremely hard X-ray spectra, with energy indices about 0. This is inconsistent with the observed 2-10 keV slopes of blazars, which cluster around an index value of 0.6. This problem can be resolved by assuming that electrons can be cooled down radiatively to non-relativistic energies, or that blazar spectra are entirely dominated by the SSC (Synchrotron-Self Compton) component up to at least 10 keV. Here, we show that the required cooling can be sufficiently efficient only at distances r < 0.03pc. SSC spectra, on the other hand, can be produced roughly co-spatially with the observed synchrotron and ERC components, which are most likely located roughly at a parsec scale. We show that the dominant SSC component can also be produced much further than the dominant synchrotron and ERC components, at distances larger than 10 parsecs. Hence, depending on the spatial distribution of the energy dissipation along the jet, one may expect to see gamma-ray/optical events with either correlated or uncorrelated X-rays. In all cases the number of electron-positron pairs per proton is predicted to be very low. The direct verification of the proposed SSC scenario requires sensitive observations in the hard X-ray band which is now possible with the NuSTAR satellite.Comment: 19 pages, 1 figure, accepted for publication in Ap

    Herschel PACS and SPIRE observations of blazar PKS 1510-089: a case for two blazar zones

    Full text link
    We present the results of observations of blazar PKS 1510-089 with the Herschel Space Observatory PACS and SPIRE instruments, together with multiwavelength data from Fermi/LAT, Swift, SMARTS and SMA. The source was found in a quiet state, and its far-infrared spectrum is consistent with a power-law with a spectral index of alpha ~ 0.7. Our Herschel observations were preceded by two 'orphan' gamma-ray flares. The near-infrared data reveal the high-energy cut-off in the main synchrotron component, which cannot be associated with the main gamma-ray component in a one-zone leptonic model. This is because in such a model the luminosity ratio of the External-Compton and synchrotron components is tightly related to the frequency ratio of these components, and in this particular case an unrealistically high energy density of the external radiation would be implied. Therefore, we consider a well-constrained two-zone blazar model to interpret the entire dataset. In this framework, the observed infrared emission is associated with the synchrotron component produced in the hot-dust region at the supra-pc scale, while the gamma-ray emission is associated with the External-Compton component produced in the broad-line region at the sub-pc scale. In addition, the optical/UV emission is associated with the accretion disk thermal emission, with the accretion disk corona likely contributing to the X-ray emission.Comment: 13 pages, 8 figures, 7 tables; accepted for publication in the Astrophysical Journa

    3C454.3 reveals the structure and physics of its 'blazar zone'

    Full text link
    Recent multi-wavelength observations of 3C454.3, in particular during its giant outburst in 2005, put severe constraints on the location of the 'blazar zone', its dissipative nature, and high energy radiation mechanisms. As the optical, X-ray, and millimeter light-curves indicate, significant fraction of the jet energy must be released in the vicinity of the millimeter-photosphere, i.e. at distances where, due to the lateral expansion, the jet becomes transparent at millimeter wavelengths. We conclude that this region is located at ~10 parsecs, the distance coinciding with the location of the hot dust region. This location is consistent with the high amplitude variations observed on ~10 day time scale, provided the Lorentz factor of a jet is ~20. We argue that dissipation is driven by reconfinement shock and demonstrate that X-rays and gamma-rays are likely to be produced via inverse Compton scattering of near/mid IR photons emitted by the hot dust. We also infer that the largest gamma-to-synchrotron luminosity ratio ever recorded in this object - having taken place during its lowest luminosity states - can be simply due to weaker magnetic fields carried by a less powerful jet.Comment: 19 pages, 3 figures, accepted for publication in Ap

    Variability Time Scales of TeV Blazars Observed in the ASCA Continuous Long-Look X-ray Monitoring

    Get PDF
    Three uninterrupted, long (lasting respectively 7, 10, and 10 days) ASCA observations of the well-studied TeV-bright blazars Mrk 421, Mrk 501 and PKS 2155-304 all show continuous strong X-ray flaring. Despite the relatively faint intensity states in 2 of the 3 sources, there was no identifiable quiescent period in any of the observations. Structure function analysis shows that all blazars have a characteristic time scale of ~ a day, comparable to the recurrence time and to the time scale of the stronger flares. On the other hand, examination of these flares in more detail reveals that each of the strong flares is not a smooth increase and decrease, but exhibits substructures of shorter flares having time scales of ~10 ks. We verify via simulations that in order to explain the observed structure function, these shorter flares ("shots") are unlikely to be fully random, but in some way are correlated with each other. The energy dependent cross-correlation analysis shows that inter-band lags are not universal in TeV blazars. This is important since in the past, only positive detections of lags were reported. In this work, we determine that the sign of a lag may differ from flare to flare; significant lags of both signs were detected from several flares, while no significant lag was detected from others. However, we also argue that the nature of the underlying component can affect these values. The facts that all flares are nearly symmetric and that fast variability shorter than the characteristic time scale is strongly suppressed, support the scenario where the light crossing time dominates the variability time scales of the day-scale flares.Comment: 29 pages, 12 figures, accepted for publication in Ap
    corecore