558 research outputs found

    Athletic Committee

    Get PDF

    Quantum Sensors for Electromagnetic Induction Imaging: from Atomic Vapours to Bose-Einstein Condensates

    Get PDF
    In this thesis, two sensors for electromagnetic induction imaging (EMI) are presented based on radio-frequency atomic magnetometry (RF-AM) in alkali atoms. The first sensor addresses portability and real-world use of EMI with AMs, by housing the major components of the RF-AM within a lightweight, minaturised system that can be mechanically translated. The atomic source was provided by a thermal vapour of 87Rb and was pumped/probed on the D1 line. The performance of the sensor is detailed and an RF sensitivity of dBAC = 19pT/√Hz was achieved. Stability of the device was investigated and potential improvements to the design are discussed. EMI with the sensor is then tested by application to two real-world industrial problems. Through-skin pilot-hole detection in Al strut-skin arrangements and corrosion detection under thermal/electrical insulation. The mechanically translatable RF-AM was able to detect and localise pilot-holes of diameter 16 mm concealed by an Al skin of thickness 0.41 mm with sub-mm precision. For corrosion detection, localisation and depth detection of recesses in an Al plate was achieved when concealed with a 1.5 mm thick piece of rubber acting as an electrical/thermal insulator. The sensor demonstrates key advantages over existing solutions to these challenges in a package that is within the reach of real-world deployment. The second sensor addresses the spatial resolution limitations of thermal vapours, by instead utilising ultra-cold atoms trapped in a tight optical potential, as the atomic source for the RF-AM. Initially an existing 87Rb BEC setup is optimised and characterised. A BEC of 65k atoms is produced via optical evaporation with a final volume of 3.2×10^−8 cm^−3. The BEC RF sensitivity is measured to be 268pT/√Hz with a volumetric sensitivity of 50.2fT/(cm3/Hz). The BEC RF-AM is found not to be limited by the atomic projection noise and a strategy for further improvements is discussed

    DAF-18/PTEN signals through AAK-1/AMPK to inhibit MPK-1/MAPK in feedback control of germline stem cell proliferation

    Get PDF
    Under replete growth conditions, abundant nutrient uptake leads to the systemic activation of insulin/IGF-1 signalling (IIS) and the promotion of stem cell growth/proliferation. Activated IIS can stimulate the ERK/MAPK pathway, the activation of which also supports optimal stem cell proliferation in various systems. Stem cell proliferation rates can further be locally refined to meet the resident tissue’s need for differentiated progeny. We have recently shown that the accumulation of mature oocytes in the C. elegans germ line, through DAF-18/PTEN, inhibits adult germline stem cell (GSC) proliferation, despite high systemic IIS activation. We show here that this feedback occurs through a novel cryptic signalling pathway that requires PAR-4/LKB1, AAK-1/AMPK and PAR-5/14-3-3 to inhibit the activity of MPK-1/MAPK, antagonize IIS, and inhibit both GSC proliferation and the production of additional oocytes. Interestingly, our results imply that DAF-18/PTEN, through PAR-4/LKB1, can activate AAK-1/AMPK in the absence of apparent energy stress. As all components are conserved, similar signalling cascades may regulate stem cell activities in other organisms and be widely implicated in cancer

    Cell Size: Chromosomes Get Slapped by a Midzone Ruler

    Get PDF
    SummarySpatial and temporal coordination of mitotic events has been generally attributed to the coincidental outcome of increasing cyclin-dependent kinase activity. A recent study reports that mitotic events and structures previously considered to be independently controlled are capable of trans-regulation to ensure genomic integrity

    Nucleosomal composition at the centromere: a numbers game

    Get PDF
    The Centromere is a unique chromosomal locus where the kinetochore is formed to mediate faithful chromosome partitioning, thus maintaining ploidy during cell division. Centromere identity is inherited via an epigenetic mechanism involving a histone H3 variant, called centromere protein A (CENP-A) which replaces H3 in centromeric chromatin. In spite of extensive efforts in field of centromere biology during the past decade, controversy persists over the structural nature of the CENP-A-containing epigenetic mark, both at nucleosomal and chromatin levels. Here, we review recent findings and hypotheses regarding the structure of CENP-A-containing complexes

    Auger electron spectroscopy of the lanthanide rare earth elements /

    Get PDF

    SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the γ-tubulin–mediated addition of centriolar microtubules

    Get PDF
    Centrioles are surrounded by pericentriolar material (PCM), which is proposed to promote new centriole assembly by concentrating γ-tubulin. Here, we quantitatively monitor new centriole assembly in living Caenorhabditis elegans embryos, focusing on the conserved components SAS-4 and SAS-6. We show that SAS-4 and SAS-6 are coordinately recruited to the site of new centriole assembly and reach their maximum levels during S phase. Centriolar SAS-6 is subsequently reduced by a mechanism intrinsic to the early assembly pathway that does not require progression into mitosis. Centriolar SAS-4 remains in dynamic equilibrium with the cytoplasmic pool until late prophase, when it is stably incorporated in a step that requires γ-tubulin and microtubule assembly. These results indicate that γ-tubulin in the PCM stabilizes the nascent daughter centriole by promoting microtubule addition to its outer wall. Such a mechanism may help restrict new centriole assembly to the vicinity of preexisting parent centrioles that recruit PCM

    A theoretical model of cytokinesis implicates feedback between membrane curvature and cytoskeletal organization in asymmetric cytokinetic furrowing

    Get PDF
    During cytokinesis, the cell undergoes a dramatic shape change as it divides into two daughter cells. Cell shape changes in cytokinesis are driven by a cortical ring rich in actin filaments and nonmuscle myosin II. The ring closes via actomyosin contraction coupled with actin depolymerization. Of interest, ring closure and hence the furrow ingression are nonconcentric (asymmetric) within the division plane across Metazoa. This nonconcentricity can occur and persist even without preexisting asymmetric cues, such as spindle placement or cellular adhesions. Cell-autonomous asymmetry is not explained by current models. We combined quantitative high-resolution live-cell microscopy with theoretical modeling to explore the mechanistic basis for asymmetric cytokinesis in the Caenorhabditis elegans zygote, with the goal of uncovering basic principles of ring closure. Our theoretical model suggests that feedback among membrane curvature, cytoskeletal alignment, and contractility is responsible for asymmetric cytokinetic furrowing. It also accurately predicts experimental perturbations of conserved ring proteins. The model further suggests that curvature-mediated filament alignment speeds up furrow closure while promoting energy efficiency. Collectively our work underscores the importance of membrane–cytoskeletal anchoring and suggests conserved molecular mechanisms for this activity
    corecore