436 research outputs found

    Prerequisites in behavioral science and business: opportunities for dental education.

    Get PDF
    There is increasing pressure on recent dental school graduates to understand and successfully utilize patient management and business management strategies to run a productive dental office. Dental schools are faced with the dilemma to either add more credit hours in their already crowded curriculum or adjust predental school requirements. All fifty-nine U.S. dental schools were assessed online to determine admission requirements in the areas of behavioral science and business education. Results show that only 11.9 percent of the schools require prerequisite course work in behavioral science and no school requires prerequisite course work in business. However, 64.4 percent and 30.5 percent of schools encouraged or recommended prerequisite course work in behavioral science and business, respectively. We suggest that the dental education community involve key stakeholders to discuss the incorporation of prerequisite course work in behavioral science and business. Additional courses in these disciplines would provide dental students better backgrounds from which the dental curriculum could build a more advanced and applied perspective to better prepare students for practice

    Thermally Activated Magnetization and Resistance Decay during Near Ambient Temperature Aging of Co Nanoflakes in a Confining Semi-metallic Environment

    Full text link
    We report the observation of magnetic and resistive aging in a self assembled nanoparticle system produced in a multilayer Co/Sb sandwich. The aging decays are characterized by an initial slow decay followed by a more rapid decay in both the magnetization and resistance. The decays are large accounting for almost 70% of the magnetization and almost 40% of the resistance for samples deposited at 35 oC^oC. For samples deposited at 50 oC^oC the magnetization decay accounts for 50\sim 50% of the magnetization and 50% of the resistance. During the more rapid part of the decay, the concavity of the slope of the decay changes sign and this inflection point can be used to provide a characteristic time. The characteristic time is strongly and systematically temperature dependent, ranging from 1\sim1x102s10^2 s at 400K to 3\sim3x105s10^5 s at 320K in samples deposited at 35oC35 ^oC. Samples deposited at 50 oC^oC displayed a 7-8 fold increase in the characteristic time (compared to the 35oC35 ^oC samples) for a given aging temperature, indicating that this timescale may be tunable. Both the temperature scale and time scales are in potentially useful regimes. Pre-Aging, Scanning Tunneling Microscopy (STM) reveals that the Co forms in nanoscale flakes. During aging the nanoflakes melt and migrate into each other in an anisotropic fashion forming elongated Co nanowires. This aging behavior occurs within a confined environment of the enveloping Sb layers. The relationship between the characteristic time and aging temperature fits an Arrhenius law indicating activated dynamics

    Temporal patterns of bat activity on the High Plains of Texas

    Get PDF
    Texas is home to more wind turbines and more bat species than any other state in the United States. Insectivorous bats provide an important economical ecosystem service in this region through agricultural pest regulation. Unfortunately, bats can be impacted negatively by wind turbines, and migratory bat species particularly so. To understand how bat activity changes throughout the year in western Texas, activity was monitored through echolocation calls and opportunistic mist-netting efforts over a period of four years (2012–2015). Peaks in activity were observed from March through April, and again in September, which coincides with previously documented migratory periods for many species native to the High Plains of Texas. Findings presented herein suggest that urban habitats are preferred stopover sites for migratory bat species while traversing arid regions such as those occurring in western Texas. In addition to human-made structures, urban habitats harbor non-native trees that provide suitable roost sites, aggregations of insect prey swarming outdoor light sources, and artificial water sources. It is important to understand bat activity in western Texas, not only for the benefit of agricultural pest suppression, but also to predict how the expansion of wind energy may affect bat populations in this region

    Spitzer Survey of the Large Magellanic Cloud, Surveying the Agents of a Galaxy's Evolution (SAGE) I: Overview and Initial Results

    Get PDF
    We are performing a uniform and unbiased, ~7x7 degrees imaging survey of the Large Magellanic Cloud (LMC), using the IRAC and MIPS instruments on board the Spitzer Space Telescope in order to survey the agents of a galaxy's evolution (SAGE), the interstellar medium (ISM) and stars in the LMC. The detection of diffuse ISM with column densities >1.2x10^21 H cm^-2 permits detailed studies of dust processes in the ISM. SAGE's point source sensitivity enables a complete census of newly formed stars with masses >3 solar masses that will determine the current star formation rate in the LMC. SAGE's detection of evolved stars with mass loss rates >1x10^-8 solar masses per year will quantify the rate at which evolved stars inject mass into the ISM of the LMC. The observing strategy includes two epochs in 2005, separated by three months, that both mitigate instrumental artifacts and constrain source variability. The SAGE data are non-proprietary. The data processing includes IRAC and MIPS pipelines and a database for mining the point source catalogs, which will be released to the community in support of Spitzer proposal cycles 4 and 5. We present initial results on the epoch 1 data with a special focus on the N79 and N83 region. The SAGE epoch 1 point source catalog has ~4 million sources. The point source counts are highest for the IRAC 3.6 microns band and decrease dramatically towards longer wavelengths consistent with the fact that stars dominate the point source catalogs and that the dusty objects, e.g. young stellar objects and dusty evolved stars that detected at the longer wavelengths, are rare in comparison. We outline a strategy for identifying foreground MW stars, that may comprise as much as 18% of the source list, and background galaxies, that may comprise ~12% of the source list.Comment: Accepted by the Astronomical Journa

    Spitzer survey of the Large Magellanic Cloud, surveying the agents of a galaxy's evolution (SAGE). IV. Dust properties in the interstellar medium

    Get PDF
    The goal of this paper is to present the results of a preliminary analysis of the extended infrared (IR) emission by dust in the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). We combine Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and Infrared Astronomical Satellite (IRAS) data and correlate the infrared emission with gas tracers of H I, CO, and Hα. We present a global analysis of the infrared emission as well as detailed modeling of the spectral energy distribution (SED) of a few selected regions. Extended emission by dust associated with the neutral, molecular, and diffuse ionized phases of the ISM is detected at all IR bands from 3.6 μm to 160 μm. The relative abundance of the various dust species appears quite similar to that in the Milky Way (MW) in all the regions we have modeled. We construct maps of the temperature of large dust grains. The temperature map shows variations in the range 12.1-34.7 K, with a systematic gradient from the inner to outer regions, tracing the general distribution of massive stars and individual H II regions as well as showing warmer dust in the stellar bar. This map is used to derive the far-infrared (FIR) optical depth of large dust grains. We find two main departures in the LMC with respect to expectations based on the MW: (1) excess mid-infrared (MIR) emission near 70 μm, referred to as the 70 μm excess, and (2) departures from linear correlation between the FIR optical depth and the gas column density, which we refer to as FIR excess emission. The 70 μm excess increases gradually from the MW to the LMC to the Small Magellanic Cloud (SMC), suggesting evolution with decreasing metallicity. The excess is associated with the neutral and diffuse ionized gas, with the strongest excess region located in a loop structure next to 30 Dor. We show that the 70 μm excess can be explained by a modification of the size distribution of very small grains with respect to that in the MW, and a corresponding mass increase of ≃13% of the total dust mass in selected regions. The most likely explanation is that the 70 μm excess is due to the production of large very small grains (VSG) through erosion of larger grains in the diffuse medium. This FIR excess could be due to intrinsic variations of the dust/gas ratio, which would then vary from 4.6 to 2.3 times lower than the MW values across the LMC, but X_(CO) values derived from the IR emission would then be about three times lower than those derived from the Virial analysis of the CO data. We also investigate the possibility that the FIR excess is associated with an additional gas component undetected in the available gas tracers. Assuming a constant dust abundance in all ISM phases, the additional gas component would have twice the known H I mass. We show that it is plausible that the FIR excess is due to cold atomic gas that is optically thick in the 21 cm line, while the contribution by a pure H_2 phase with no CO emission remains a possible explanation

    Training of Instrumentalists and Development of New Technologies on SOFIA

    Full text link
    This white paper is submitted to the Astronomy and Astrophysics 2010 Decadal Survey (Astro2010)1 Committee on the State of the Profession to emphasize the potential of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to contribute to the training of instrumentalists and observers, and to related technology developments. This potential goes beyond the primary mission of SOFIA, which is to carry out unique, high priority astronomical research. SOFIA is a Boeing 747SP aircraft with a 2.5 meter telescope. It will enable astronomical observations anywhere, any time, and at most wavelengths between 0.3 microns and 1.6 mm not accessible from ground-based observatories. These attributes, accruing from the mobility and flight altitude of SOFIA, guarantee a wealth of scientific return. Its instrument teams (nine in the first generation) and guest investigators will do suborbital astronomy in a shirt-sleeve environment. The project will invest $10M per year in science instrument development over a lifetime of 20 years. This, frequent flight opportunities, and operation that enables rapid changes of science instruments and hands-on in-flight access to the instruments, assure a unique and extensive potential - both for training young instrumentalists and for encouraging and deploying nascent technologies. Novel instruments covering optical, infrared, and submillimeter bands can be developed for and tested on SOFIA by their developers (including apprentices) for their own observations and for those of guest observers, to validate technologies and maximize observational effectiveness.Comment: 10 pages, no figures, White Paper for Astro 2010 Survey Committee on State of the Professio

    Geons with spin and charge

    Full text link
    We construct new geon-type black holes in D>3 dimensions for Einstein's theory coupled to gauge fields. A static nondegenerate vacuum black hole has a geon quotient provided the spatial section admits a suitable discrete isometry, and an antisymmetric tensor field of rank 2 or D-2 with a pure F^2 action can be included by an appropriate (and in most cases nontrivial) choice of the field strength bundle. We find rotating geons as quotients of the Myers-Perry(-AdS) solution when D is odd and not equal to 7. For other D we show that such rotating geons, if they exist at all, cannot be continuously deformed to zero angular momentum. With a negative cosmological constant, we construct geons with angular momenta on a torus at the infinity. As an example of a nonabelian gauge field, we show that the D=4 spherically symmetric SU(2) black hole admits a geon version with a trivial gauge bundle. Various generalisations, including both black-brane geons and Yang-Mills theories with Chern-Simons terms, are briefly discussed.Comment: 26 pages, 1 figure. LaTeX with amssymb, amsmath. (v2: References and a figure added.
    corecore