4 research outputs found

    Definition of an indicator assessing the impact of a dam on the downstream river landscape

    Get PDF
    The increasing number of water withdrawals in Alpine regions represents a significant threat to aquatic ecosystems and river landscape (riverscape). To assess their sustainability, the impacts on river ecological status and landscape features need to be quantified with appropriate indicators. However, assessment of landscape attributes is a complex challenge, due to the lack of standardized methods. Moreover, few metrics quantifying the impacts of water withdrawal on downstream riverscape perception are available in the scientific literature. In this paper, a new indicator, named Landscape Protection Level (LPL), aimed at assessing the effects of water withdrawals on the river landscape, is presented. The indicator has been developed in Aosta Valley (NW Italian Alps), where the river network is heavily exploited by hundreds of withdrawals for hydropower production and irrigation, and it has been included in a multi-criteria analysis (MCA) procedure to assess the sustainability of water withdrawal licenses in relation to different flow release scenarios. The LPL indicator is based on three parameters, Constraint Factor, Release Factor, and Visual Elements Factor, quantifying the presence of landscape protection constraints, the ratio of flow released downstream of the dam to the available river discharge, and the impact on the visual perception of the bypassed stretch, respectively. Its application in four real case studies of existing hydropower plants is presented and discussed in the paper, demonstrating the indicator applicability to assess both specific release values and flow release scenarios varying over the year. Results are analyzed by highlighting the main strengths and weaknesses of the indicator and proposing some suggestions for future improvements. In particular, the reactiveness of the indicator, the representativeness of the stakeholders’ interests, the transparency of the indicator calculation procedure, and the time required for data collection and processing are discussed. Finally, future activities aimed at further improving the indicator applicability and transferability to different river contexts are proposed

    Definition of an indicator assessing the impact of a dam on the downstream river landscape

    Get PDF
    Abstract The increasing number of water withdrawals in Alpine regions represents a significant threat to aquatic ecosystems and river landscape (riverscape). To assess their sustainability, the impacts on river ecological status and landscape features need to be quantified with appropriate indicators. However, assessment of landscape attributes is a complex challenge, due to the lack of standardized methods. Moreover, few metrics quantifying the impacts of water withdrawal on downstream riverscape perception are available in the scientific literature. In this paper, a new indicator, named Landscape Protection Level (LPL), aimed at assessing the effects of water withdrawals on the river landscape, is presented. The indicator has been developed in Aosta Valley (NW Italian Alps), where the river network is heavily exploited by hundreds of withdrawals for hydropower production and irrigation, and it has been included in a multi-criteria analysis (MCA) procedure to assess the sustainability of water withdrawal licenses in relation to different flow release scenarios. The LPL indicator is based on three parameters, Constraint Factor, Release Factor, and Visual Elements Factor, quantifying the presence of landscape protection constraints, the ratio of flow released downstream of the dam to the available river discharge, and the impact on the visual perception of the bypassed stretch, respectively. Its application in four real case studies of existing hydropower plants is presented and discussed in the paper, demonstrating the indicator applicability to assess both specific release values and flow release scenarios varying over the year. Results are analyzed by highlighting the main strengths and weaknesses of the indicator and proposing some suggestions for future improvements. In particular, the reactiveness of the indicator, the representativeness of the stakeholders' interests, the transparency of the indicator calculation procedure, and the time required for data collection and processing are discussed. Finally, future activities aimed at further improving the indicator applicability and transferability to different river contexts are proposed

    RNAseq Analysis of Livers from Pigs Treated with Testosterone and Nandrolone Esters: Selection and Field Validation of Transcriptional Biomarkers

    No full text
    The use of anabolic–androgenic steroids (AASs) as growth promoters in farm animals is banned in the European Union, representing both an illicit practice and a risk for consumer health. However, these compounds are still illegally administered, often in the form of synthetic esters. This work aimed to characterize significant coding RNA perturbations related to the illicit administration of testosterone and nandrolone esters in fattening pigs. A total of 27 clinically healthy 90-day-old pigs were randomly assigned to test and control groups. Nine animals were treated with testosterone esters (Sustanon®) and other nine with nandrolone esters (Myodine®). At the end of the trial, liver samples were collected and analyzed using RNAseq, allowing the identification of 491 differentially expressed genes (DEGs). The transcriptional signature was further characterized by a smaller sub-cluster of 143 DEGs, from which a selection of 16 genes was made. The qPCR analysis confirmed that the identified cluster could still give good discrimination between untreated gilt and barrows compared to the relative testosterone-treated counterparts. A conclusive field survey on 67 liver samples collected from pigs of different breeds and weight categories confirmed, in agreement with testosterone residue profiles, the specificity of selected transcriptional biomarkers, showing their potential applications for screening purposes when AAS treatment is suspected, allowing to focus further investigations of competent authorities and confirmatory analysis where needed
    corecore