1,122 research outputs found

    Detectability of High Redshift Ellipticals in the Hubble Deep Field

    Get PDF
    Relatively few intensively star-forming galaxies at redshifts z>2.5 have been found in the Hubble Deep Field (HDF). This has been interpreted to imply a low space density of elliptical galaxies at high z, possibly due to a late (z<2.5) epoch of formation, or to dust obscuration of the ellipticals that are forming at z~3. I use HST UV (2300 Ang) images of 25 local early-type galaxies to investigate a third option, that ellipticals formed at z>4.5, and were fading passively by 2<z<4.5. Present-day early-types are faint and centrally concentrated in the UV. If ellipticals formed their stars in a short burst at z>4.5, and have faded passively to their present brightnesses at UV wavelengths, they would generally be below the HDF detection limits in any of its bands at z>2.5. Quiescent z ~ 3 ellipticals, if they exist, should turn up in sufficiently deep IR images.Comment: AAS LaTex, 11 pages, 1 table, 1 figure, some corrections and clarifications, accepted for publication in ApJ

    The Near Infrared Background: Interplanetary Dust or Primordial Stars?

    Full text link
    The intensity of the diffuse ~ 1 - 4 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval (Arendt & Dwek 2003, Matsumoto et al. 2005). The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from HII regions formed by the first generation of very massive stars. In this paper we analyze the implications of this spectral component for the formation rate of these Population III stars, the redshift interval during which they formed, the reionization of the universe and evolution of collapsed halo masses. We find that to reproduce the intensity and spectral shape of the NIRBL requires a peak star formation rate that is higher by about a factor of 4 to 10 compared to those derived from hierarchical models. Furthermore, an extragalactic origin for the NIRBL leads to physically unrealistic absorption-corrected spectra of distant TeV blazars. All these results suggest that Pop III stars contribute only a fraction of the NIRBL intensity with zodiacal light, star forming galaxies, and/or non-nuclear sources giving rise to the remaining fraction.Comment: 28 pages including 7 embedded figures. Submitted to Ap

    Luminosity Density of Galaxies and Cosmic Star Formation Rate from Lambda-CDM Hydrodynamical Simulations

    Full text link
    We compute the cosmic star formation rate (SFR) and the rest-frame comoving luminosity density in various pass-bands as a function of redshift using large-scale \Lambda-CDM hydrodynamical simulations with the aim of understanding their behavior as a function of redshift. To calculate the luminosity density of galaxies, we use an updated isochrone synthesis model which takes metallicity variations into account. The computed SFR and the UV-luminosity density have a steep rise from z=0 to 1, a moderate plateau between z=1 - 3, and a gradual decrease beyond z=3. The raw calculated results are significantly above the observed luminosity density, which can be explained either by dust extinction or the possibly inappropriate input parameters of the simulation. We model the dust extinction by introducing a parameter f; the fraction of the total stellar luminosity (not galaxy population) that is heavily obscured and thus only appears in the far-infrared to sub-millimeter wavelength range. When we correct our input parameters, and apply dust extinction with f=0.65, the resulting luminosity density fits various observations reasonably well, including the present stellar mass density, the local B-band galaxy luminosity density, and the FIR-to-submm extragalactic background. Our result is consistent with the picture that \sim 2/3 of the total stellar emission is heavily obscured by dust and observed only in the FIR. The rest of the emission is only moderately obscured which can be observed in the optical to near-IR wavelength range. We also argue that the steep falloff of the SFR from z=1 to 0 is partly due to the shock-heating of the universe at late times, which produces gas which is too hot to easily condense into star-forming regions.Comment: 25 pages, 6 figures. Accepted version in ApJ. Substantially revised from the previous version. More emphasis on the comparison with various observations and the hidden star formation by dust extinctio

    The shapes, orientation, and alignment of Galactic dark matter subhalos

    Full text link
    We present a study of the shapes, orientations, and alignments of Galactic dark matter subhalos in the ``Via Lactea'' simulation of a Milky Way-size LCDM host halo. Whereas isolated dark matter halos tend to be prolate, subhalos are predominantly triaxial. Overall subhalos are more spherical than the host halo, with minor to major and intermediate to major axis ratios of 0.68 and 0.83, respectively. Like isolated halos, subhalos tend to be less spherical in their central regions. The principal axis ratios are independent of subhalo mass, when the shapes are measured within a physical scale like r_Vmax, the radius of the peak of the circular velocity curve. Subhalos tend to be slightly more spherical closer to the host halo center. The spatial distribution of the subhalos traces the prolate shape of the host halo when they are selected by the largest V_max they ever had, i.e. before they experienced strong tidal mass loss. The subhalos' orientation is not random: the major axis tends to align with the direction towards the host halo center. This alignment disappears for halos beyond 3 r_200 and is more pronounced when the shapes are measured in the outer regions of the subhalos. The radial alignment is preserved during a subhalo's orbit and they become elongated during pericenter passage, indicating that the alignment is likely caused by the host halo's tidal forces. These tidal interactions with the host halo act to make subhalos rounder over time.Comment: 12 pages, 11 figures, submitted to ApJ, v2: corrected typo in abstract ("[...] subhalos tend be less spherical in their central regions."), added a few reference

    An Integrated Picture of Star Formation, Metallicity Evolution, and Galactic Stellar Mass Assembly

    Full text link
    We present an integrated study of star formation and galactic stellar mass assembly from z=0.05-1.5 and galactic metallicity evolution from z=0.05-0.9 using a very large and highly spectroscopically complete sample selected by rest-frame NIR bolometric flux in the GOODS-N. We assume a Salpeter IMF and fit Bruzual & Charlot (2003) models to compute the galactic stellar masses and extinctions. We determine the expected formed stellar mass density growth rates produced by star formation and compare them with the growth rates measured from the formed stellar mass functions by mass interval. We show that the growth rates match if the IMF is slightly increased from the Salpeter IMF at intermediate masses (~10 solar masses). We investigate the evolution of galaxy color, spectral type, and morphology with mass and redshift and the evolution of mass with environment. We find that applying extinction corrections is critical when analyzing galaxy colors; e.g., nearly all of the galaxies in the green valley are 24um sources, but after correcting for extinction, the bulk of the 24um sources lie in the blue cloud. We find an evolution of the metallicity-mass relation corresponding to a decrease of 0.21+/-0.03 dex between the local value and the value at z=0.77 in the 1e10-1e11 solar mass range. We use the metallicity evolution to estimate the gas mass of the galaxies, which we compare with the galactic stellar mass assembly and star formation histories. Overall, our measurements are consistent with a galaxy evolution process dominated by episodic bursts of star formation and where star formation in the most massive galaxies (>1e11 solar masses) ceases at z<1.5 because of gas starvation. (Abstract abridged)Comment: 48 pages, Accepted by the Astrophysical Journa

    Infalling Faint [OII] Emitters in Abell 851. I. Spectroscopic Confirmation of Narrowband-Selected Objects

    Get PDF
    We report on a spectroscopic confirmation of narrowband-selected [OII] emitters in Abell 851 catalogued by Martin et al. (2000). The optical spectra obtained from the Keck I Low Resolution Imaging Spectrometer (LRIS) and Keck II Deep Imaging Multi-Object Spectrograph (DEIMOS) have confirmed [OII]3727 emission in narrowband-selected cluster [OII] candidates at a 85% success rate for faint (i <~ 25) blue (g-i < 1) galaxies. The rate for the successful detection of [OII] emission is a strong function of galaxy color, generally proving the efficacy of narrowband [OII] search supplemented with broadband colors in selecting faint cluster galaxies with recent star formation. Balmer decrement-derived reddening measurements show a high degree of reddening [E(B-V) >~ 0.5] in a significant fraction of this population. Even after correcting for dust extinction, the [OII]/Ha line flux ratio for the high-E(B-V) galaxies remains generally lower by a factor of ~2 than the mean [OII]/Ha ratios reported by the studies of nearby galaxies. The strength of [OII] equivalent width shows a negative trend with galaxy luminosity while the Ha equivalent width does not appear to depend as strongly on luminosity. This in part is due to the high amount of reddening observed in luminous galaxies. Furthermore, emission line ratio diagnostics show that AGN-like galaxies are abundant in the high luminosity end of the cluster [OII]-emitting sample, with only moderately strong [OII] equivalent widths, consistent with a scenario of galaxy evolution connecting AGNs and suppression of star-forming activity in massive galaxies.Comment: 11 pages (LaTeX emulateapj), 8 figures, to appear in ApJ. A version with high resolution figures available from the lead autho

    Counts and Sizes of Galaxies in the Hubble Deep Field - South: Implications for the Next Generation Space Telescope

    Full text link
    Science objectives for the Next Generation Space Telescope (NGST) include a large component of galaxy surveys, both imaging and spectroscopy. The Hubble Deep Field datasets include the deepest observations ever made in the ultraviolet, optical and near infrared, reaching depths comparable to that expected for NGST spectroscopy. We present the source counts, galaxy sizes and isophotal filling factors of the HDF-South images. The observed integrated galaxy counts reach >500 galaxies per square arcminute at AB<30. We extend these counts to faint levels in the infrared using models. The trend previously seen that fainter galaxies are smaller, continues to AB=29 in the high resolution HDF-S STIS image, where galaxies have a typical half-light radius of 0.1 arcseconds. Extensive Monte Carlo simulations show that the small measured sizes are not due to selection effects until >29mag. Using the HDF-S NICMOS image, we show that galaxies are smaller in the near infrared than they are in the optical. We analyze the isophotal filling factor of the HDF-S STIS image, and show that this image is mostly empty sky even at the limits of galaxy detection, a conclusion we expect to hold true for NGST spectroscopy. At the surface brightness limits expected for NGST imaging, however, about a quarter of the sky is occupied by the outer isophotes of AB<30 galaxies. We discuss the implications of these data on several design concepts of the NGST near-infrared spectrograph. We compare the effects of resolution and the confusion limit of various designs, as well as the multiplexing advantages of either multi-object or full-field spectroscopy. We argue that the optimal choice for NGST spectroscopy of high redshift galaxies is a multi-object spectrograph (MOS) with target selection by a micro electro mechanical system (MEMS) device.Comment: 27 pages including 10 figures, accepted for publication in the Astronomical Journal, June 2000, abridged abstrac

    Evolution of Lyman Break Galaxies Beyond Redshift Four

    Get PDF
    The formation rate of luminous galaxies seems to be roughly constant from z~2 to z~4 from the recent observations of Lyman break galaxies (LBGs) (Steidel et al 1999). The abundance of luminous quasars, on the other hand, appears to drop off by a factor of more than twenty from z~2 to z~5 (Warren, Hewett, & Osmer 1994; Schmidt, Schneider, & Gunn 1995). The difference in evolution between these two classes of objects in the overlapping, observed redshift range, z=2-4, can be explained naturally, if we assume that quasar activity is triggered by mergers of luminous LBGs and one quasar lifetime is ~10^{7-8} yrs. If this merger scenario holds at higher redshift, for the evolutions of these two classes of objects to be consistent at z>4, the formation rate of luminous LBGs is expected to drop off at least as rapidly as exp(-(z-4)^{6/5}) at z>4.Comment: in press, ApJ Letters, 15 latex pages plus 1 fi

    Low Star Formation Rates for z=1 Early-Type Galaxies in the Very Deep GOODS-MIPS Imaging: Implications for their Optical/Near-Infrared Spectral Energy Distributions

    Get PDF
    We measure the obscured star formation in z~1 early-type galaxies. This constrains the influence of star formation on their optical/near-IR colors, which, we found, are redder than predicted by the model by Bruzual & Charlot (2003). From deep ACS imaging we construct a sample of 95 morphologically selected early-type galaxies in the HDF-N and CDF-S with spectroscopic redshifts in the range 0.85<z<1.15. We measure their 24 micron fluxes from the deep GOODS-MIPS imaging and derive the IR luminosities and star formation rates. The fraction of galaxies with >2 sigma detections (~25 muJy} is 17(-4,+9)%. Of the 15 galaxies with significant detections at least six have an AGN. Stacking the MIPS images of the galaxies without significant detections and adding the detected galaxies without AGN we find an upper limit on the mean star formation rate (SFR) of 5.2+/-3.0 Msol yr^-1, and on the mean specific SFR of 4.6+/-2.2 * 10^-11 yr^-1. Under the assumption that the average SFR will decline at the same rate as the cosmic average, the in situ growth in stellar mass of the early-type galaxy population is less than 14+/-7% between z=1 and the present. We show that the typically low IR luminosity and SFR imply that the effect of obscured star formation (or AGN) on their rest-frame optical/near-IR SEDs is negligible for ~90% of the galaxies in our sample. Hence, their optical/near-IR colors are most likely dominated by evolved stellar populations. This implies that the colors predicted by the Bruzual & Charlot (2003) model for stellar populations with ages similar to those of z~1 early-type galaxies (~1-3 Gyr) are most likely too blue, and that stellar masses of evolved, high-redshift galaxies can be overestimated by up to a factor of ~2.Comment: Accepted for publication in ApJ, 8 pages, 4 figures, 1 tabl
    • …
    corecore