72 research outputs found

    Phospho-HDAC6 Gathers Into Protein Aggregates in Parkinson’s Disease and Atypical Parkinsonisms

    Get PDF
    HDAC6 is a unique histone deacetylase that targets cytoplasmic non-histone proteins and has a specific ubiquitin-binding activity. Both of these activities are required for HDAC6-mediated formation of aggresomes, which contain misfolded proteins that will ultimately be degraded via autophagy. HDAC6 deacetylase activity is increased following phosphorylation on serine 22 (phospho-HDAC6). In human, HDAC6 localizes in neuronal Lewy bodies in Parkinson\u2019s disease (PD) and in oligodendrocytic Papp\u2013Lantos bodies in multiple system atrophy (MSA). However, the expression of phospho-HDAC6 in post-mortem human brains is currently unexplored. Here, we evaluate and compare the distribution of HDAC6 and its phosphorylated form in human brains obtained from patients affected by three forms of parkinsonism: two synucleinopathies (PD and MSA) and a tauopathy (progressive supranuclear palsy, PSP). We find that both HDAC6 and its phosphorylated form localize with pathological protein aggregates, including \u3b1-synuclein-positive Lewy bodies in PD and Papp\u2013Lantos bodies in MSA, and phospho-tau-positive neurofibrillary tangles in PSP. We further find a direct interaction of HDAC6 with \u3b1-synuclein with proximity ligation assay (PLA) in neuronal cell of PD patients. Taken together, our findings suggest that both HDAC6 and phospho-HDAC6 regulate the homeostasis of intra-neuronal proteins in parkinsonism

    Closed-loop Control of a Vibrant Duct Gravimetric Feeder

    Get PDF
    Abstract -In this work the control system for a gravimetric feeder with vibrant duct for polymer extrusion process has been designed. The plant considered in this paper is a blending machine that mixes up to six components: each component is measured by a dedicated vibrant duct. All components are mixed directly in the chambers of the extruder screw. The mass delivered by each meter is measured by a load cell. The control objectives are: accurate mass flow estimate on the basis of the weight; accurate mass flow regulation; minimum settling time; robustness of the controller parameters against the variation of material and structure of meter

    Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury

    Get PDF
    Inflammation plays a major pathological role in spinal cord injury (SCI). Although antiinflammatory treatment using the glucocorticoid methyprednisolone sodium succinate (MPSS) improved outcomes in several multicenter clinical trials, additional clinical experience suggests that MPSS is only modestly beneficial in SCI and poses a risk for serious complications. Recent work has shown that erythropoietin (EPO) moderates CNS tissue injury, in part by reducing inflammation, limiting neuronal apoptosis, and restoring vascular autoregulation. We determined whether EPO and MPSS act synergistically in SCI. Using a rat model of contusive SCI, we compared the effects of EPO [500-5,000 units/kg of body weight (kg-bw)] with MPSS (30 mg/kg-bw) for proinflammatory cytokine production, histological damage, and motor function at 1 month after a compression injury. Although high-dose EPO and MPSS suppressed proinflarnmatory cytokines within the injured spinal cord, only EPO was associated with reduced microglial infiltration, attenuated scar formation, and sustained neurological improvement. Unexpectedly, coadministration of MPSS antagonized the protective effects of EPO, even though the EPO receptor was up-regulated normally after injury. These data illustrate that the suppression of proinflammatory cytokines alone does not necessarily prevent secondary injury and suggest that glucocorticoids should not be coadministered in clinical trials evaluating the use of EPO for treatment of SCI

    Blood Cell Mitochondrial DNA Content and Premature Ovarian Aging.

    Get PDF
    Primary ovarian insufficiency (POI) is a critical fertility defect characterized by an anticipated and silent impairment of the follicular reserve, but its pathogenesis is largely unexplained. The frequent maternal inheritance of POI together with a remarkable dependence of ovarian folliculogenesis upon mitochondrial biogenesis and bioenergetics suggested the possible involvement of a generalized mitochondrial defect. Here, we verified the existence of a significant correlation between blood and ovarian mitochondrial DNA (mtDNA) content in a group of women undergoing ovarian hyperstimulation (OH), and then aimed to verify whether mtDNA content was significantly altered in the blood cells of POI women. We recruited 101 women with an impaired ovarian reserve: 59 women with premature ovarian failure (POF) and 42 poor responders (PR) to OH. A Taqman copy number assay revealed a significant mtDNA depletion (P<0.001) in both POF and PR women in comparison with 43 women of similar age and intact ovarian reserve, or 53 very old women with a previous physiological menopause. No pathogenic variations in the mitochondrial DNA polymerase Îł (POLG) gene were detected in 57 POF or PR women with low blood mtDNA content. In conclusion, blood cell mtDNA depletion is a frequent finding among women with premature ovarian aging, suggesting that a still undetermined but generalized mitochondrial defect may frequently predispose to POI which could then be considered a form of anticipated aging in which the ovarian defect may represent the first manifestation. The determination of mtDNA content in blood may become an useful tool for the POI risk prediction

    Raman micro-spectroscopy can be used to investigate the developmental stage of the mouse oocyte

    Get PDF
    In recent years, the uptake of assisted reproductive techniques such as in vitro fertilisation has risen exponentially. However, there is much that is still not fully understood about the biochemical modifications that take place during the development and maturation of the oocyte. As such, it is essential to further the understanding of how oocyte manipulation during these procedures ultimately affects its developmental potential; yet, there are few methods currently available which are capable of providing a quantitative measure of oocyte quality. Raman spectroscopy enables investigation of the global biochemical profile of intact cells without the need for labelling. Here, Raman spectra were acquired from the ooplasm of mouse oocytes at various stages of development, from late pre-antral follicles, collected after in vitro maturation within their ovarian follicles and from unstimulated and stimulated ovulatory cycles. Using a combination of univariate and multivariate statistical methods, it was found that ooplasm lipid content could be used to discriminate between different stages of oocyte development. Furthermore, the spectral profiles of mature oocytes revealed that oocytes which have developed in vitro are protein-deficient when compared to in vivo grown oocytes. Finally, the ratio of two Raman peak intensities, namely 1605:1447 cm21, used as a proxy for the protein-to-lipid ratio of the ooplasm, was shown to be indicative of the oocyte’s quality. Together, results indicate that Raman spectroscopy may present an alternative analytical tool fo

    An in-depth comprehension of the protection mechanism of Al alloysby aniline-based silane

    No full text
    The protection mechanism of Al alloys by aniline-based silane (AnSi) was investigated by different experi-mental approaches. In particular, spectroscopic techniques were used for studying the chemistry of AnSisolution as a function of pH and water content, as well as in the presence of different metal ions. Inaddition, monitoring of structural changes of AnSi-based films deposited on different Al alloys duringexposure to mild aggressive conditions (humidity and laboratory environments) was carried out. Electro-chemical techniques, namely impedance measurements (Mott\u2013Schottky analysis) and potentiodynamicpolarization were applied for investigating relationships between the semiconductor behavior and theprotection capacity of AnSi-based films in NaCl. Overall results converge to confirm that the protectioncapacity of the hybrid AnSi-based films is strictly determined by both charge transfer N H\ub7 \ub7 \ub7N complexesand metal\u2013aniline interactions during the surface treatment step

    The association between α-synuclein and α-tubulin in brain synapses

    Get PDF
    α-synuclein is a small protein that is mainly expressed in the synaptic terminals of nervous tissue. Although its implication in neurodegeneration is well established, the physiological role of α-synuclein remains elusive. Given its involvement in the modulation of synaptic transmission and the emerging role of microtubules at the synapse, the current study aimed at investigating whether α-synuclein becomes involved with this cytoskeletal component at the presynapse. We first analyzed the expression of α-synuclein and its colocalization with α-tubulin in murine brain. Differences were found between cortical and striatal/midbrain areas, with substantia nigra pars compacta and corpus striatum showing the lowest levels of colocalization. Using a proximity ligation assay, we revealed the direct interaction of α-synuclein with α-tubulin in murine and in human brain. Finally, the previously unexplored interaction of the two proteins in vivo at the synapse was disclosed in murine striatal presynaptic boutons through multiple approaches, from confocal spinning disk to electron microscopy. Collectively, our data strongly suggest that the association with tubulin/microtubules might actually be an important physiological function for α-synuclein in the synapse, thus suggesting its potential role in a neuropathological context

    Erythropoietin-mediated preservation of the white matter in rat spinal cord injury

    No full text
    We investigated the effect of a single administration of recombinant human erythropoietin (rhEPO) on the preservation of the ventral white matter of rats at four weeks after contusive spinal cord injury (SCI), a time at which functional recovery is significantly improved in comparison to the controls (Gorio et al., 2002, 2005). Specifically, we examined, by morphological and cytochemical methods combined with light, confocal and electron microscopy, i) myelin preservation, ii) activation of adult oligodendrocyte progenitors (OPCs) identified for the expression of NG2 transmembrane proteoglycan, iii) changes in the amount of the chondroitin sulfate proteoglycans neurocan, versican and phosphacan and of their glycosaminoglycan component labeled with Wisteria floribunda lectin, and iv) ventral horn density of the serotonergic plexus as a marker of descending motor control axons. Injured rats received either saline or a single dose of rhEPO within 30 minutes after SCI. The results showed that the significant improvement of functional outcome observed in rhEPO-treated rats was associated with a better preservation of myelin in the ventral white matter. Moreover, the significant increase of both the number of NG2-positive OPCs and the labeling for Nogo-A, a marker of differentiated oligodendrocytes, suggested that rhEPO treatment could result in the generation of new myelinating oligodendrocytes. Sparing of fiber tracts in the ventral white matter was confirmed by the increased density of the serotonergic plexus around motor neurons. As for chondroitin sulfate proteoglycans, only phosphacan, increased in saline-treated rats, returned to normal levels in rhEPO group, probably reflecting a better maintenance of glial-axolemmal relationships along nerve fibers. In conclusion, this investigation expands previous studies supporting the pleiotropic neuroprotective effect of rhEPO on secondary degenerative response and its therapeutic potential for the treatment of SCI and confirms that the preservation of the ventral white matter, which contains descending motor pathways, may be critical for limiting functional deficit

    Chronic erythropoietin-mediated effects on the expression of astrocyte markers in a rat model of contusive spinal cord injury

    No full text
    Using a standardized rat model of contusive spinal cord injury (SCI; [Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Vardar E, Cerami A, Brines M (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 99:9450-9455]), we previously showed that the administration of recombinant human erythropoietin (rhEPO) improves both tissue sparing and locomotory outcome. In the present study, to better understand rhEPO-mediated effects on chronic astrocyte response to SCI in rat, we have used immunocytochemical methods combined with confocal and electron microscopy to investigate, 1 month after injury, the effects of a single rhEPO administration on the expression of a) aquaporin 4 (AQP4), the main astrocytic water channel implicated in edema development and resolution, and two molecules (dystrophin and syntrophin) involved in its membrane anchoring; b) glial fibrillary acidic protein (GFAP) and vimentin as markers of astrogliosis; c) chondroitin sulfate proteoglycans of the extracellular matrix which are upregulated after SCI and can inhibit axonal regeneration and influence neuronal and glial properties. Our results show that rhEPO administration after SCI modifies astrocytic response to injury by increasing AQP4 immunoreactivity in the spinal cord, but not in the brain, without apparent modifications of dystrophin and syntrophin distribution. Attenuation of astrogliosis, demonstrated by the semiquantitative analysis of GFAP labeling, was associated with a reduction of phosphacan/RPTP zeta/beta, whereas the levels of lecticans remained unchanged. Finally, the relative volume of a microvessel fraction was significantly increased, indicating a pro-angiogenetic or a vasodilatory effect of rhEPO. These changes were consistently associated with remarkable reduction of lesion size and with improvement in tissue preservation and locomotor recovery, confirming previous observations and underscoring the potentiality of rhEPO for the therapeutic management of SCI

    Control System Design for a Continuous Gravimetric Blender

    No full text
    In this work the control system for a continuous gravimetric blender for polymer extrusion process has been designed. The plant considered in this paper is a blending machine that mixes two different polymers, a bulk one and an additive. Each component of the mix is metered by a dedicated screw meter system. The mass delivered by each meter is measured by a load cell. The two components are poured into a hopper (the mixer) directly embedded on the extruder input. The control objectives are manifold and include: accurate mass flow estimate on the basis of the weight and screw speed measurements; accurate mass flow regulation of each meter; keeping of the relative proportions among all the components that are metered in all the operating conditions; guarantee that inside the mixer there is always material enough to fulfill the mass flow variation request of the extruder
    • 

    corecore