14 research outputs found

    Soft sensor for content prediction in an integrated continuous pharmaceutical formulation line based on the residence time distribution of unit operations

    Get PDF
    In this study, a concentration predicting soft sensor was achieved based on the Residence Time Distribution (RTD) of an integrated, three-step pharmaceutical formulation line. The RTD was investigated with color-based tracer experiments using image analysis. Twin-screw wet granulation (TSWG) was directly coupled with a horizontal fluid bed dryer and an oscillating mill. Based on integrated measurement, we proved that it is also possible to couple the unit operations in silico. Three surrogate tracers were produced with a coloring agent to investigate the separated unit operations and the solid and liquid inputs of the TSWG. The soft sensor’s prediction was compared to validating experiments of a 0.05 mg/g (15% of the nominal) concentration change with High-Performance Liquid Chromatography (HPLC) reference measurements of the active ingredient proving the adequacy of the soft sensor (RMSE < 4%)

    Continuous Manufacturing of Homogeneous Ultralow-Dose Granules by Twin-Screw Wet Granulation

    Get PDF
    Homogeneous ultralow-dose (30 mg) tablets were prepared from perfectly free-flowing granules manufactured by continuous Twin-Screw Wet Granulation. The gravimetrically fed mixture of lactose and potato starch of low particle size was successfully agglomerated and the size enlargement technology proved to be very robust. Since the incorporated drug was dissolved in ethanol-based granulation liquid, the resulting homogeneity largely depended on the dosing of the applied liquid administering units.A&nbsp;peristaltic pump generated higher deviation of the drug content in tablets (Relative Standard Deviation (RSD): 7.7 %) compared to&nbsp;a syringe pump (RSD: 2.3 %) or a piston pump (RSD: 4.6 %). This is due to the pulsation of the liquid flow generated by the peristaltic pump according to the real-time measured mass of the fed liquid. A good correlation was found between the RSD of the liquid mass flow (calculated from the recorded masses) and the RSD of the drug content. Based on the results, the goodness of Content Uniformity, as&nbsp;the most relevant critical quality attribute of low-dose products, was determined by the characteristics of the applied dosing units. The feeding characteristic of the different pumps could be easily measured by the introduced balance-based method and therefore, the applicability of the pumps could be evaluated

    Real-Time Monitoring of Continuous Pharmaceutical Mixed Suspension Mixed Product Removal Crystallization Using Image Analysis

    Get PDF
    In this work, we developed an in-line image analysis system for the monitoring of the continuous crystallization of an active pharmaceutical ingredient. Acetylsalicylic acid was crystallized in a mixed suspension mixed product removal crystallizer, which was equipped with overflow tubing as an outlet. A steep glass plate was placed under the outlet onto which the slurry dripped on its surface. The glass plate spread and guided the droplets toward the product collection filter. A high-speed process camera was mounted above the glass plate to capture images of the crystals. Several light sources were tested in various positions to find the appropriate experimental setup for the optimal image quality. Samples were taken during continuous operation for off-line particle size analysis in order to compare to the crystal size distributions calculated from the images. The results were in good agreement, and the trends of the process could be followed well using the images. As a next step, image analysis was operated throughout the entire continuous crystallization experiment, and a huge quantity of information was collected from the process. The crystal size distribution of the product was calculated every 30 s, which provided a thorough and detailed insight into the crystallization process

    Process Design of Continuous Powder Blending Using Residence Time Distribution and Feeding Models

    Get PDF
    The present paper reports a thorough continuous powder blending process design of acetylsalicylic acid (ASA) and microcrystalline cellulose (MCC) based on the Process Analytical Technology (PAT) guideline. A NIR-based method was applied using multivariate data analysis to achieve in-line process monitoring. The process dynamics were described with residence time distribution (RTD) models to achieve deep process understanding. The RTD was determined using the active pharmaceutical ingredient (API) as a tracer with multiple designs of experiment (DoE) studies to determine the effect of critical process parameters (CPPs) on the process dynamics. To achieve quality control through material diversion from feeding data, soft sensor-based process control tools were designed using the RTD model. The operation block model of the system was designed to select feasible experimental setups using the RTD model, and feeder characterizations as digital twins, therefore visualizing the output of theoretical setups. The concept significantly reduces the material and instrumental costs of process design and implementation

    Integrated Continuous Melt Granulation-based Powder-to-Tablet Line: Process Investigation and Scale-Up on the Same Equipment

    Get PDF
    In the last decades, continuous manufacturing (CM) has become a research priority in the pharmaceutical in-dustry. However, significantly fewer scientific researches address the investigation of integrated, continuous systems, a field that needs further exploration to facilitate the implementation of CM lines. This research outlines the development and optimization of an integrated, polyethylene glycol aided melt granulation-based powder-to-tablet line that operates fully continuously. The flowability and tabletability of a caffeine-containing powder mixture were improved through twin-screw melt granulation resulting in the production of tablets with improved breaking force (from 15 N to over 80 N), excellent friability, and immediate release dissolution. The system was also conveniently scaleable: the production speed could be increased from 0.5 kg/h to 8 kg/h with only minimal changes in the process parameters and using the same equipment. Thereby the frequent challenges of scale-up can be avoided, such as the need for new equipment and separate optimization
    corecore