2,019 research outputs found
Genetic Parameters of Common Wheat in Nepal
Knowledge on variation within traits and their genetics are prerequisites in crop improvement program. Thus, in present paper we aimed to estimate genetic and environmental indices of common wheat genotypes. For the purpose, eight quantitative traits were measured from 30 wheat genotypes, which were in randomized complete block design with 3 replicates. Components of variance and covariance were estimated along with heritability, genetic gain, realized heritability, coheritability and correlated response. Differences between phenotypic and genotypic variances in heading days, maturity days and plant height were not large. Grain yield and plant height showed the highest phenotypic (18.189%) and genotypic (12.06%) coefficient of variances, respectively. Phenotypic covariance was higher than genotypic and environmental covariance in most of the traits. The highest heritability and realized heritability were of heading days followed by maturity days. Genetic gain for plant height was the highest. Co-heritability of 1000-grain weight with tillers number was the highest. The highest correlated response was expressed by grain yield with tillers number. This study indicates the possibility of improving wheat genotypes through selection utilizing existing variation in these traits.Journal of Nepal Agricultural Research Council Vol.1 2015 pp.9-1
On Markovian solutions to Markov Chain BSDEs
We study (backward) stochastic differential equations with noise coming from
a finite state Markov chain. We show that, for the solutions of these equations
to be `Markovian', in the sense that they are deterministic functions of the
state of the underlying chain, the integrand must be of a specific form. This
allows us to connect these equations to coupled systems of ODEs, and hence to
give fast numerical methods for the evaluation of Markov-Chain BSDEs
Recommended from our members
Efficient pricing of ratchet equity-indexed annuities in a variance-gamma economy
In this paper we propose a new method for approximating the price of arithmetic Asian options in a Variance-Gamma (VG) economy, which is then applied to the problem of pricing equityindexed annuity contracts. The proposed procedure is an extension to the case of a VG-based model of the moment-matching method developed by Turnbull and Wakeman and Levy for the pricing of this class of path-dependent options in the traditional Black-Scholes setting. The accuracy of the approximation is analyzed against RQMC estimates for the case of ratchet equityindexed annuities with index averaging
From attosecond to zeptosecond coherent control of free-electron wave functions using semi-infinite light fields
Light-electron interaction in empty space is the seminal ingredient for
free-electron lasers and also for controlling electron beams to dynamically
investigate materials and molecules. Pushing the coherent control of free
electrons by light to unexplored timescales, below the attosecond, would enable
unprecedented applications in light-assisted electron quantum circuits and
diagnostics at extremely small timescales, such as those governing
intramolecular electronic motion and nuclear phenomena. We experimentally
demonstrate attosecond coherent manipulation of the electron wave function in a
transmission electron microscope, and show that it can be pushed down to the
zeptosecond regime with existing technology. We make a relativistic pulsed
electron beam interact in free space with an appropriately synthesized
semi-infinite light field generated by two femtosecond laser pulses reflected
at the surface of a mirror and delayed by fractions of the optical cycle. The
amplitude and phase of the resulting coherent oscillations of the electron
states in energymomentum space are mapped via momentum-resolved ultrafast
electron energy-loss spectroscopy. The experimental results are in full
agreement with our theoretical framework for light-electron interaction, which
predicts access to the zeptosecond timescale by combining semi-infinite X-ray
fields with free electrons.Comment: 22 pages, 6 figure
Rheology of Active-Particle Suspensions
We study the interplay of activity, order and flow through a set of
coarse-grained equations governing the hydrodynamic velocity, concentration and
stress fields in a suspension of active, energy-dissipating particles. We make
several predictions for the rheology of such systems, which can be tested on
bacterial suspensions, cell extracts with motors and filaments, or artificial
machines in a fluid. The phenomena of cytoplasmic streaming, elastotaxis and
active mechanosensing find natural explanations within our model.Comment: 3 eps figures, submitted to Phys Rev Let
Energy landscape of a Lennard-Jones liquid: Statistics of stationary points
Molecular dynamics simulations are used to generate an ensemble of saddles of
the potential energy of a Lennard-Jones liquid. Classifying all extrema by
their potential energy u and number of unstable directions k, a well defined
relation k(u) is revealed. The degree of instability of typical stationary
points vanishes at a threshold potential energy, which lies above the energy of
the lowest glassy minima of the system. The energies of the inherent states, as
obtained by the Stillinger-Weber method, approach the threshold energy at a
temperature close to the mode-coupling transition temperature Tc.Comment: 4 RevTeX pages, 6 eps figures. Revised versio
Tilt Texture Domains on a Membrane and Chirality induced Budding
We study the equilibrium conformations of a lipid domain on a planar fluid
membrane where the domain is decorated by a vector field representing the tilt
of the stiff fatty acid chains of the lipid molecules, while the surrounding
membrane is fluid and structureless. The inclusion of chirality in the bulk of
the domain induces a novel budding of the membrane, which preempts the budding
induced by a decrease in interfacial tension.Comment: 5 pages, 3 figure
Mean-atom-trajectory model for the velocity autocorrelation function of monatomic liquids
We present a model for the motion of an average atom in a liquid or
supercooled liquid state and apply it to calculations of the velocity
autocorrelation function and diffusion coefficient . The model
trajectory consists of oscillations at a distribution of frequencies
characteristic of the normal modes of a single potential valley, interspersed
with position- and velocity-conserving transits to similar adjacent valleys.
The resulting predictions for and agree remarkably well with MD
simulations of Na at up to almost three times its melting temperature. Two
independent processes in the model relax velocity autocorrelations: (a)
dephasing due to the presence of many frequency components, which operates at
all temperatures but which produces no diffusion, and (b) the transit process,
which increases with increasing temperature and which produces diffusion.
Because the model provides a single-atom trajectory in real space and time,
including transits, it may be used to calculate all single-atom correlation
functions.Comment: LaTeX, 8 figs. This is an updated version of cond-mat/0002057 and
cond-mat/0002058 combined Minor changes made to coincide with published
versio
- …