80 research outputs found
Generating Signals with Multiscale Time Irreversibility: The Asymmetric Weierstrass Function
Time irreversibility (asymmetry with respect to time reversal) is an important property of many time series derived from processes in nature. Some time series (e.g., healthy heart rate dynamics) demonstrate even more complex, multiscale irreversibility, such that not only the original but also coarse-grained time series are asymmetric over a wide range of scales. Several indices to quantify multiscale asymmetry have been introduced. However, there has been no simple generator of model time series with ' 'tunable' ' multiscale asymmetry to test such indices. We introduce an asymmetric Weierstrass function W A (constructed from asymmetric sawtooth functions instead of cosine waves) that can be used to construct time series with any given value of the multiscale asymmetry. We show that multiscale asymmetry appears to be independent of other multiscale complexity indices, such as fractal dimension and multiscale entropy. We further generalize the concept of multiscale asymmetry by introducing time-dependent (local) multiscale asymmetry and provide examples of such time series. The W A function combines two essential features of complex fluctuations, namely fractality (self-similarity) and irreversibility (multiscale time asymmetry); moreover, each of these features can be tuned independently. The proposed family of functions can be used to compare and refine multiscale measures of time series asymmetry
Dynamical density delay maps: simple, new method for visualising the behaviour of complex systems
Background. Physiologic signals, such as cardiac interbeat intervals, exhibit complex fluctuations. However, capturing important dynamical properties, including nonstationarities may not be feasible from conventional time series graphical representations. Methods. We introduce a simple-to-implement visualisation method, termed dynamical density delay mapping (``D3-Map'' technique) that provides an animated representation of a system's dynamics. The method is based on a generalization of conventional two-dimensional (2D) Poincar� plots, which are scatter plots where each data point, x(n), in a time series is plotted against the adjacent one, x(n+1). First, we divide the original time series, x(n) (n=1,..., N), into a sequence of segments (windows). Next, for each segment, a three-dimensional (3D) Poincar� surface plot of x(n), x(n+1), hx(n),x(n+1) is generated, in which the third dimension, h, represents the relative frequency of occurrence of each (x(n),x(n+1)) point. This 3D Poincar\'e surface is then chromatised by mapping the relative frequency h values onto a colour scheme. We also generate a colourised 2D contour plot from each time series segment using the same colourmap scheme as for the 3D Poincar\'e surface. Finally, the original time series graph, the colourised 3D Poincar\'e surface plot, and its projection as a colourised 2D contour map for each segment, are animated to create the full ``D3-Map.'' Results. We first exemplify the D3-Map method using the cardiac interbeat interval time series from a healthy subject during sleeping hours. The animations uncover complex dynamical changes, such as transitions between states, and the relative amount of time the system spends in each state. We also illustrate the utility of the method in detecting hidden temporal patterns in the heart rate dynamics of a patient with atrial fibrillation. The videos, as well as the source code, are made publicly available. Conclusions. Animations based on density delay maps provide a new way of visualising dynamical properties of complex systems not apparent in time series graphs or standard Poincar\'e plot representations. Trainees in a variety of fields may find the animations useful as illustrations of fundamental but challenging concepts, such as nonstationarity and multistability. For investigators, the method may facilitate data exploration
Recommended from our members
Complexity-Based Measures Inform Effects of Tai Chi Training on Standing Postural Control: Cross-Sectional and Randomized Trial Studies
Background: Diminished control of standing balance, traditionally indicated by greater postural sway magnitude and speed, is associated with falls in older adults. Tai Chi (TC) is a multisystem intervention that reduces fall risk, yet its impact on sway measures vary considerably. We hypothesized that TC improves the integrated function of multiple control systems influencing balance, quantifiable by the multi-scale “complexity” of postural sway fluctuations. Objectives: To evaluate both traditional and complexity-based measures of sway to characterize the short- and potential long-term effects of TC training on postural control and the relationships between sway measures and physical function in healthy older adults. Methods: A cross-sectional comparison of standing postural sway in healthy TC-naïve and TC-expert (24.5±12 yrs experience) adults. TC-naïve participants then completed a 6-month, two-arm, wait-list randomized clinical trial of TC training. Postural sway was assessed before and after the training during standing on a force-plate with eyes-open (EO) and eyes-closed (EC). Anterior-posterior (AP) and medio-lateral (ML) sway speed, magnitude, and complexity (quantified by multiscale entropy) were calculated. Single-legged standing time and Timed-Up–and-Go tests characterized physical function. Results: At baseline, compared to TC-naïve adults (n = 60, age 64.5±7.5 yrs), TC-experts (n = 27, age 62.8±7.5 yrs) exhibited greater complexity of sway in the AP EC (P = 0.023), ML EO (P<0.001), and ML EC (P<0.001) conditions. Traditional measures of sway speed and magnitude were not significantly lower among TC-experts. Intention-to-treat analyses indicated no significant effects of short-term TC training; however, increases in AP EC and ML EC complexity amongst those randomized to TC were positively correlated with practice hours (P = 0.044, P = 0.018). Long- and short-term TC training were positively associated with physical function. Conclusion: Multiscale entropy offers a complementary approach to traditional COP measures for characterizing sway during quiet standing, and may be more sensitive to the effects of TC in healthy adults. Trial Registration ClinicalTrials.gov NCT0134036
Desenvolvimento de uma sopa de casca de maracujá sabor mandioquinha e frango: avaliação preliminar da aceitabilidade.
bitstream/item/78147/1/p2009-037.pd
Avaliação do curso de gerenciamento online na perspectiva dos egressos
RESUMO Objetivo Avaliar curso online na perspectiva do egresso e verificar a relação entre variáveis. Método Estudo quantitativo, descritivo e exploratório, aplicado aos participantes no final de três versões de um curso de atualização onlinena temática de Gerenciamento em Enfermagem. Resultados Os índices de satisfação nas três categorias elencadas, em três anos, apresentaram resultados acima de 75,0%. Os coeficientes obtidos indicaram alta consistência do questionário. Considerando o índice total, a categoria Desempenho do tutor foi a de índice mais alto. Fortes associações entre Autoavaliação e Desempenho do tutor, Autoavaliação e Programa do curso e Desempenho do tutor e Programa do curso foram identificadas. Não houve associação entre as três categorias referidas com as demais variáveis do estudo. Conclusão Os egressos demonstraram satisfação com o curso, que favoreceu a interação e a promoção do conhecimento coletivo no gerenciamento em enfermagem. Foram reconhecidos, também, aspectos que carecem de melhorias, com destaque à capacitação do tutor para mediar discussões e estimular o envolvimento do estudante ao longo do curso
Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions Vitamin D pathways unbalanced in breast lesions
<p>Abstract</p> <p>Background</p> <p>Breast cancer is a heterogeneous disease associated with different patient prognosis and responses to therapy. Vitamin D has been emerging as a potential treatment for cancer, as it has been demonstrated that it modulates proliferation, apoptosis, invasion and metastasis, among others. It acts mostly through the Vitamin D receptor (VDR) and the synthesis and degradation of this hormone are regulated by the enzymes CYP27B1 and CYP24A1, respectively. We aimed to study the expression of these three proteins by immunohistochemistry in a series of breast lesions.</p> <p>Methods</p> <p>We have used a cohort comprising normal breast, benign mammary lesions, carcinomas <it>in situ </it>and invasive carcinomas and assessed the expression of the VDR, CYP27B1 and CYP24A1 by immunohistochemistry.</p> <p>Results</p> <p>The results that we have obtained show that all proteins are expressed in the various breast tissues, although at different amounts. The VDR was frequently expressed in benign lesions (93.5%) and its levels of expression were diminished in invasive tumours (56.2%). Additionally, the VDR was strongly associated with the oestrogen receptor positivity in breast carcinomas. CYP27B1 expression is slightly lower in invasive carcinomas (44.6%) than in benign lesions (55.8%). In contrast, CYP24A1 expression was augmented in carcinomas (56.0% in <it>in situ </it>and 53.7% in invasive carcinomas) when compared with that in benign lesions (19.0%).</p> <p>Conclusions</p> <p>From this study, we conclude that there is a deregulation of the Vitamin D signalling and metabolic pathways in breast cancer, favouring tumour progression. Thus, during mammary malignant transformation, tumour cells lose their ability to synthesize the active form of Vitamin D and respond to VDR-mediated Vitamin D effects, while increasing their ability to degrade this hormone.</p
Nonlinear Time Series Analysis of Nodulation Factor Induced Calcium Oscillations: Evidence for Deterministic Chaos?
Legume plants form beneficial symbiotic interactions with nitrogen fixing bacteria (called rhizobia), with the rhizobia being accommodated in unique structures on the roots of the host plant. The legume/rhizobial symbiosis is responsible for a significant proportion of the global biologically available nitrogen. The initiation of this symbiosis is governed by a characteristic calcium oscillation within the plant root hair cells and this signal is activated by the rhizobia. Recent analyses on calcium time series data have suggested that stochastic effects have a large role to play in defining the nature of the oscillations. The use of multiple nonlinear time series techniques, however, suggests an alternative interpretation, namely deterministic chaos. We provide an extensive, nonlinear time series analysis on the nature of this calcium oscillation response. We build up evidence through a series of techniques that test for determinism, quantify linear and nonlinear components, and measure the local divergence of the system. Chaos is common in nature and it seems plausible that properties of chaotic dynamics might be exploited by biological systems to control processes within the cell. Systems possessing chaotic control mechanisms are more robust in the sense that the enhanced flexibility allows more rapid response to environmental changes with less energetic costs. The desired behaviour could be most efficiently targeted in this manner, supporting some intriguing speculations about nonlinear mechanisms in biological signaling
Biological decolorization of xanthene dyes by anaerobic granular biomass
Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes—Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L−1, while the process rates were independent of the biomass concentration above 1.89 g VSS L−1. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L−1 AC0). Using different modified AC samples (from the treatment of AC0), a threefold higher rate was obtained with the most basic one, \textAC\textH2ACH2, as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na2S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.This work was supported by the PTDC/AMB/69335/2006 project grants (Fundacao para a Ciencia e Technologia, FCT, Portugal), BRAIN project (ID 6681, European Social Found and Romanian Government and the grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0559, Contract 265/2011
Ciprofloxacin, diclofenac, ibuprofen and 17α-ethinylestradiol differentially affect the activity of acetogens and methanogens in anaerobic communities
Pharmaceutical compounds end up in wastewater treatment plants but little is known on their effect towards the different microbial groups in anaerobic communities. In this work, the effect of the antibiotic Ciprooxacin (CIP), the non-steroidal anti-inammatory drugs Diclofenac (DCF) and Ibuprofen (IBP), and the hormone 17-ethinylestradiol (EE2), on the activity of acetogens and methanogens in anaerobic communities, was investigated. Microbial communities were more affected by CIP, followed by EE2, DCF and IBP, but the response of the different microbial groups was dissimilar. For concentrations of 0.01 to 0.1 mg/L, the specic methanogenic activity was not affected. Acetogenic bacteria were sensitive to CIP concentrations above 1 mg/L, while DCF and EE2 toxicity was only detected for concentrations higher than 10 mg/L, and IBP had no effect in all concentrations tested. Acetoclastic methanogens showed higher sensitivity to the presence of these micropollutants, being affect by all the tested pharmaceutical compounds although at different degrees. Hydrogenotrophic methanogens were not affected by any concentration, indicating their lower sensitivity to these compounds when compared to acetoclasts and acetogens.e Portuguese Foundation for
Science and Technology (FCT) under the scope of the strategic
funding of UID/BIO/04469/2019 unit and BioTecNorte operation
(NORTE-01-0145-FEDER-000004) funded by the European Regional
Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. Ana Rita Silva holds a Grant from FCT,
reference SFRH/BD/131905/2017info:eu-repo/semantics/publishedVersio
- …