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Time irreversibility (asymmetry with respect to time reversal) is an important property of many time series

derived from processes in nature. Some time series (e.g., healthy heart rate dynamics) demonstrate even more

complex, multiscale irreversibility, such that not only the original but also coarse-grained time series are

asymmetric over a wide range of scales. Several indices to quantify multiscale asymmetry have been intro-

duced. However, there has been no simple generator of model time series with ‘‘tunable’’ multiscale asymmetry

to test such indices. We introduce an asymmetric Weierstrass function WA (constructed from asymmetric saw-

tooth functions instead of cosine waves) that can be used to construct time series with any given value of the

multiscale asymmetry. We show that multiscale asymmetry appears to be independent of other multiscale

complexity indices, such as fractal dimension and multiscale entropy. We further generalize the concept of

multiscale asymmetry by introducing time-dependent (local) multiscale asymmetry and provide examples of

such time series. The WA function combines two essential features of complex fluctuations, namely fractality

(self-similarity) and irreversibility (multiscale time asymmetry); moreover, each of these features can be tuned

independently. The proposed family of functions can be used to compare and refine multiscale measures of

time series asymmetry. � 2010 Wiley Periodicals, Inc. Complexity 00: 000–000, 2010
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I. INTRODUCTION

T
ime irreversibility (asymmetry with respect to time re-

versal) is an important property of many observed

time series. Such asymmetry is evidence of the nonli-

nearity of a time series, as linear Gaussian processes are

time reversible [1]. Several statistical tests have been
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developed toward detection and quantification of irreversi-

bility in time series (see e.g., [2, 3]). The irreversibility of

natural processes reflects the ‘‘arrow of time’’ and is a fun-

damental property of nonequilibrium systems [4]. Many

complex time series (e.g., heart rate) demonstrate an even

more complex, multiscale irreversibility such that not only

the original but also coarse-grained time series are asym-

metric within a range of scales. Several quantitative meas-

ures (indices) of multiscale irreversibility have been devel-

oped [5–10]. However, the relationships among these indi-

ces have not been studied, and it is possible that each of

them measures a different aspect of multiscale time asym-

metry. Besides their theoretical importance, such indices

have practical applications. For example, indices of heart

rate and electroencephalogram (EEG) time asymmetry

(both single and multiscale) can be used as diagnostic

tools (see e.g., [5–7, 11–18]).

Thus, it is important to investigate the properties of

these indices of time asymmetry.1 Note, that experimental

and observational time series are not very suitable for

such an analysis, since for example, they may contain

other (both known and possibly unknown) types of ‘‘com-

plexity,’’ which may affect the results of the asymmetry

analysis and comparison of different asymmetry measures.

Thus, there is a need to develop a simple deterministic

time series with exactly known properties and variable

multiscale asymmetry.

In this article, we introduce an asymmetric Weierstrass

function WA (constructed from asymmetric sawtooth func-

tions instead of cosine waves) that can be used to con-

struct time series with any prescribed value of the multi-

scale asymmetry. The article is organized as follows. In

Section II, we define the multiscale asymmetry index [5,6]

used in this study. In Section III, we define the classical

and asymmetric Weierstrass functions and in Section IV,

we calculate their multiscale asymmetry indices. We sum-

marize and conclude in Section V.

II. DEFINITION OF MULTISCALE ASYMMETRY
To calculate the asymmetry index, an original time series

x(n), n 5 1,. . .,N (where N is the number of points in the

time series) is transformed into a new time series of

coarse-grained differences (for every scale s 5

1,. . .,Smax�N) defined as:

ysðkÞ ¼ xðk þ sÞ � xðkÞ k ¼ 1; . . . ;N � s (1)

Individual terms (increments and decrements) in each

new time series Eq. (1) quantify transitions between two

values in the original time series: an increase (activation)

or a decrease (relaxation). For a perfectly symmetric time

series, the number of increments is equal to the number

of decrements. Thus, the time asymmetry can be defined

at every scale s as a difference between the percentages

(probabilities) of increments and decrements [6]:

AiðsÞ ¼ PþðsÞ � P�ðsÞ ¼

PN�s

k¼1

u½�ysðkÞ�
N � s

�

PN�s

k¼1

u½ysðkÞ�
N � s

(2)

Here, y is the Heaviside function.

III. WEIERSTRASS AND ASYMMETRIC WEIERSTRASS
FUNCTIONS
The Weierstrass function is the first published [19] exam-

ple of a continuous but nowhere differentiable function. It

is defined as follows:

W ðtÞ ¼
XKmax

k¼1

f �kH
min cosð2pf kmintÞ (3)

Here, fmin is the minimum frequency of oscillations and H

is the so-called Hurst (or scaling) exponent (0<H<1),

which is related to the fractal dimension, D, according to

the following formula:

D ¼ 2�H (4)

The power spectrum of the Weierstrass function has a

‘‘power law’’ shape

Sðf Þ � 1=f b (5)

where the power exponent b is related to the Hurst expo-

nent according to the relationship:

b ¼ 2H þ 1 (6)

Note, that the detrended fluctuation analysis (DFA, [20])

exponent a is related to the Hurst exponent as:

H ¼ a� 1 (7)

The Weierstrass function is also a classic model of a

(multi) fractal process, and it is widely used in physics

1In this initial study, we consider only one index [5,6] of

multiscale asymmetry. Theoretical analysis of other indices

can be found, e.g., in [7, 8].
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and physiology (see e.g., [21–23]). However, the Weierstrass

function is a sum of cosine waves and, therefore, reversi-

ble (time symmetric) at any mode (frequency) because the

cosine function is symmetric with respect to time reversal

operation. Thus, it cannot be used to model irreversible

time series [with the irreversibility defined according to

Eq. (2)].

To overcome this restriction, we introduce a modified

Weierstrass function (the ‘‘asymmetric Weierstrass’’ func-

tion or WA function) by substituting the cosine functions

with sawtooth functions:

WAðtÞ ¼
XKmax

k¼1

f �kH
min Stð2pf kmint;xÞ (8)

Here, x(0 � x � 1) is the asymmetry parameter that deter-

mines the relative position of the maximum within one

period of the sawtooth function St(t) (in this study, we

used the sawtooth function available in MATLAB [24]), see

Figure 1. The asymmetric Weierstrass function Eq. (8) is

deterministic and defined with a simple formula, so it is

suitable for both theoretical analysis and numerical experi-

ments.

The asymmetric Weierstrass function is irreversible at

any mode (frequency). By varying the asymmetry parame-

ter x, we can continuously change the multiscale time

asymmetry of the signal (Figure 2). Note that the WA func-

tion constructed from fully symmetric (x 5 0.5) sawtooth

functions is equivalent to the ‘‘positive midpoint displace-

ments’’ method of fractal time series construction (see e.g.,

[25]) and is a version of the Takagi function, another con-

tinuous but nowhere differentiable function [26].

IV. MULTISCALE ASYMMETRY OF THE WA FUNCTION
To assess the dependence of the multiscale asymmetry

index on the asymmetry parameter x, we generated 101

WA functions [Eq. (8)] with linearly increasing the asym-

FIGURE 1

Top: One period of the sawtooth function St (T and f are, correspondingly, the period and the frequency of the function). The asymmetry parameter
x (0 � x � 1) determines the relative position of the maximum within one period of the sawtooth function. Bottom: Three specific versions of the
sawtooth function that correspond to the following values of the asymmetry parameter x: x 5 0.0 (fully asymmetric ‘‘reverse’’ sawtooth), x 5 0.5 (fully
symmetric triangle wave) and x 5 1.0 (fully asymmetric ‘‘forward’’ sawtooth). Note that the functions that correspond to the two limiting cases (x 5 1
and x 5 0) are discontinuous.
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metry parameter x(n) 5 (n21)/100 (n 5 1,. . .,101) and

Hurst exponent H 5 0.5 (corresponds to regular Brownian

motion). The length of each dataset was equal to Tmax 5 100

s, and the sampling frequency was equal to fs 5 5000 Hz

(therefore the each dataset had N 5 5�105 points). The maxi-

mum number of modes, Kmax, in Eq. (8) can be estimated

from the Nyquist sampling theorem [27]: fmax � fNyquist ¼ fs
2.

Since fmax 5 fKmax

min then Kmax ¼ logðfmaxÞ
logðfminÞ �

logðfs=2Þ
logðfminÞ. For the pa-

rameters used in this study (fs 5 5000 Hz, fmin 5 1.5 Hz), the

lower bound is Kmax � 20. However, as MsAi is a time-do-

main measure, we used a much larger value, Kmax 5 100.

In Figure 3, we plot percentages of increments (P1) and

decrements (P2) and their difference [Ai, see Eq. (2)], up to

the scale Smax 5 5000 for the WA function constructed from

fully asymmetric (x 5 0.0) sawtooth functions. Note that N

5 102Smax, and thus, the condition Smax�N is satisfied.

There is no unique way to quantify multiscale asymme-

try of a signal with a single number. Here, we employed

one of many possible definitions. We observed that even

for a ‘‘fully-asymmetric’’ (x 5 0.0) WA function, the asym-

metry index Ai crosses zero at some scale S*. Thus, we

chose the sum of the asymmetry values up to the scale S*

(normalized by the value of that scale, S*) as a quantitative

measure of the signal multiscale asymmetry:2

MsAi ¼ 1

S�
XS�

s¼1

AiðsÞ (9)

where Ai(s) is the asymmetry index at scale s, and S* is the

scale when the Ai(s) crosses zero (changes the sign) for the

first time.3 The MsAi index depends monotonically

(approximately linearly) on the asymmetry parameter x

(Figure 4). Thus, we can construct (by varying the asym-

metry parameter x) a time series with any prescribed

(given) value of the multiscale asymmetry. This is the

main result of the paper.

Note, that multiscale asymmetry is a property of a self-

similar time series that is independent from its fractal

dimension D (or, equivalently, its Hurst exponent). Indeed,

it has been shown (see e.g., [28] and references, therein)

that any function of the form

FðtÞ ¼
X1

k¼0

f �kHgðf k � tÞ (10)

2Two other possible definitions are area under the Ai(s)

curve (AUC) and a parameter from (e.g., exponential) fit of

the Ai(s) curve decay.
3Note, that the scale S* depends on the sampling frequency

fs, but both the time constant s 5 S*/fs (characteristic time

of asymmetry) and the (normalized) asymmetry index MsAi

Eq. (9) are approximately constant for a wide range of the

sampling frequencies. Thus, it would be an advantage to

plot the asymmetry index versus characteristic frequency or

characteristic time, instead of the scale.

FIGURE 2

Asymmetric Weierstrass function Eq. (8) with Hurst exponent H 5 0.5 (corresponds to the classical Brownian motion), minimum frequency fmin 5 2.0
Hz and asymmetry parameter, x varying from x 5 0.5 (fully symmetric) to x 5 1.0 (fully asymmetric).

4 C O M P L E X I T Y Q 2010 Wiley Periodicals, Inc.
DOI 10.1002/cplx



where g(t) is a periodic function that satisfies the Lipchitz-

Holder condition of order H

gðt þ DtÞ � gðtÞj j � C Dtj jH (11)

has scaling (Hurst) exponent H and fractal dimension

D 5 2 2 H (see also ‘‘Lipchitz-Holder heuristics’’ in [21]).

As any sawtooth function is periodic and satisfies the con-

dition defined by Eq. (11) for any value of the asymmetry

parameter x [ (0,1), the asymmetric Weierstrass function

Eq. (8) has the same fractal dimension D regardless of the

value of x. In two limiting cases, x 5 0 and x 5 1, the

corresponding sawtooth functions are discontinuous, and

thus, they do not satisfy the Lipchitz-Holder condition.

We also tested this statement numerically, by calculating

the DFA exponent of our datasets. We calculated DFA-based

Hurst exponents Eq. (7) from 101 WA functions Eq. (8) with

linearly increasing asymmetry parameter x(n) 5 (n21)/100

(n 5 1,. . .,101) and Hurst exponent H 5 0.5 (see Figure 5,

top). The DFA-based Hurst exponent of the WA function in

the fully symmetric case (x 5 0.5) becomes approximately

equal to the DFA-based Hurst exponent of cosine-based W

function (marked as ‘‘X’’ in Figure 5, top): HDFA(WA: x 5 0.5)

5 0.4587 and HDFA(W) 5 0.4624. Calculated DFA-based

exponents of all asymmetric (x = 0.5) WA functions are

smaller than those of the symmetric WA (or W) function.

Again, as the theory predicts, this deviation becomes signifi-

cant at the regions close to the two limiting cases, x 5 0 and

x 5 1, where the Lipchitz-Holder condition is not valid.

However, within a wide range of x(0.2 � x � 0.8) the Hurst

exponent is relatively independent from the asymmetry pa-

rameter, in agreement with the theory.4

Besides fractal dimension, multiscale asymmetry

appears to be independent of some other multiscale com-

plexity indices. As another numerical test, we computed

multiscale entropies (MsEn) [29] of both cosine-based W

function and 101 WA functions with varying asymmetry

parameter (again, in all the cases H 5 0.5). The results

demonstrate that for all values of x, MsEn curves lie very

close to each other (Figure 5, bottom). Again, we found

that MsEn of the symmetric (x 5 0.5) WA function is prac-

tically indistinguishable from MsEn of the corresponding

W function, whereas MsEn of fully asymmetric (x 5 0.0

and x 5 1.0) WA functions are outliers at small scales.

Thus, MsAi is independent (within a wide range of

asymmetry parameter values) from other multiscale meas-

ures. The asymmetry parameter can be varied continu-

FIGURE 3

Top: Percentages of increments (P1) and decrements (P2) and
(bottom) asymmetry index Ai Eq. (2) as functions of scale s (up to
the maximum scale Smax 5 5000) for the WA function Eq. (8) con-
structed using fully asymmetric (x 5 0.0) sawtooth functions.

4As shown in Figure 5, all DFA-based exponents lie below

the ‘‘theoretical’’ value (H 5 0.5). We found that our DFA

calculations systematically underestimate values of Hurst

exponent Eq. (7) as compared with ‘‘theoretical’’ Hurst expo-

nents used to construct W functions [both for cosine-based

W Eq. (2) and WA functions Eq. (8)]. This may be due to a

finite number of modes (Kmax) in Eqs. (2) and (8) or

because the summation started with k 5 1 (not with k 5

2Kmax), so these functions are not truly ‘‘scale free.’’ Anyway,

a detailed analysis of why the DFA method underestimates

values of the Hurst exponents W-type functions is outside

the scope of the article. Our goal was to demonstrate, via

numerical calculations [in addition to the formal analysis,

Eq. (11)], that the fractal dimension of the WA function

(measured by DFA exponent) remains approximately con-

stant (regardless of the specific value of this constant)

within a wide range of asymmetry parameter. Underestima-

tion leads to a ‘‘systematic error,’’ which is nevertheless the

same for all the datasets.

Q 2010 Wiley Periodicals, Inc. C O M P L E X I T Y 5
DOI 10.1002/cplx



ously (to construct a time series with any prescribed value

of multiscale asymmetry) while preserving other multi-

scale properties. More detailed analysis is needed to deter-

mine the origin of the weak dependence of other multi-

scale properties (e.g., scaling exponent and multiscale en-

tropy) from the asymmetry parameter x around two

limiting cases (x 5 0.0 and x 5 1.0).

The proposed modification of the Weierstrass function

permits one important generalization. Note, that if the

Hurst exponent is time dependent, H 5 H(t) (a time vary-

ing scaling exponent is usually referred as Holder expo-

nent [30]), the Weierstrass function demonstrates multi-

fractal properties [31, 32]. In a similar manner, we can

introduce time-dependent (local) multiscale time asymme-

try (irreversibility) x 5 x (t). Such time dependent asym-

metry may exist, for example in long-term (e.g., Holter

monitor) recordings [33] of the heart rate, as its time

asymmetry may depend on the level of physical activity

(rest vs. intensive exercise or sleep vs. wake).5 An example

of time-dependent (piecewise constant) multiscale time

asymmetry is given below (where T is the length of time

series), see Figure 6:

xðtÞ ¼
0 0 � t < T=3
0:5 T=3 � t < 2T=3
1 2T=3 � t < T

8<
: (12)

In this extreme case, multiscale time asymmetry has oppo-

site signs in two parts of the time series. While multiscale

asymmetry of whole time series is zero, it is possible to

recover such a time-dependent multiscale time asymmetry

by dividing the initial time series into overlapping win-

dows and applying the same algorithm [Eqs. (2) and (9)]

to each window (Figure 6, bottom).

V. DISCUSSION
In this article, we introduced a new method of construct-

ing a simple deterministic function (asymmetric Weier-

strass function, WA) with any prescribed value of multi-

scale asymmetry (irreversibility). Then, we provided evi-

dence (both analytical and computational) that multiscale

asymmetry index is independent of other multiscale com-

plexity measures of time series (such as MsEn or DFA

FIGURE 4

Multiscale asymmetry index MsAi Eq. (9) as a function of the
asymmetry parameter x for 101 WA functions (H 5 0.5, fmin 5
1.5 Hz).

5Note that multiscale time asymmetry of heart rate time se-

ries can have different absolute values but always has the

same sign.

FIGURE 5

Multiscale complexity measures for 101 WA functions Eq. (8) with
different values of asymmetry parameter x and the same Hurst
exponent H 5 0.5. Top: DFA-based Hurst exponents (��O��) and
‘‘theoretical’’ Hurst exponent (----). The value of DFA-based Hurst
exponent of cosine-based W function with Hurst exponent H 5 0.5
is marked by ‘‘X’’; (bottom) multiscale entropy (mean and standard
deviation values vs. scale).
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exponent). Finally, we generalized the concept of the mul-

tiscale asymmetry by introducing time-dependent (local)

multiscale asymmetry and constructed examples of such

time series. Thus, the WA function combines two essential

features of complex time series (e.g., healthy heart rate),

namely fractality (multiscale self-similarity or long-range

correlations) and irreversibility (multiscale time asymme-

try); moreover, each of these features can be tuned inde-

pendently.

Here, we have considered only the simplest case, where

all modes in WA function have the same value of the

asymmetry parameter x. Possible generalizations can

include, for example, scale (mode)-dependent time asym-

metry x(k) 5 (k/Kmax)21, so that the asymmetry is differ-

ent for each mode (for every basis function) or x 5

rand(1, Kmax) (the asymmetry of every mode is chosen

randomly). In general, the asymmetry parameter can

depend on both time and mode, x 5 x(k,t). Thus, a large

FIGURE 6

Top: WA Time series constructed using the asymmetry parameter x defined by Eq. (12). (insets: fragments of the time series that have constant asym-
metry parameter x ). Bottom: Piecewise constant asymmetry parameter x Eq. (12) and time dependent multiscale asymmetry index MsAi, calculated
using overlapping windows (window length is equal to 10% of the dataset length) with 90% overlap.
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variety of test signals can be created to test different

aspects of proposed asymmetry indices.

Interestingly, most of the classical continuous but

nowhere differentiable (fractal or self-similar) functions

are symmetric even on a single scale (for a historical

review, see [34]). Also, the Takagi function is not the only

fractal (continuous but nowhere differentiable) function

constructed using the symmetric sawtooth function.

Other examples include McCarthy [35] and Knopp [36]

functions. Thus, multiscale asymmetric functions (with

any prescribed degree of asymmetry) can be constructed

from these functions as well.

Note, that the ‘‘power law’’ frequency dependence (loga-

rithmic scale) in the Weierstrass function is somewhat

inconvenient for numerical analysis, because both multi-

scale entropy MsEn and multiscale asymmetry MsAi use

linear scales. Similarly, the Fourier transform [27] (in con-

trast to, e.g., Wavelet [37] or Constant-Q [38] transforms),

which is used for calculation of scaling exponent from

power spectrum, employs a linear sequence of frequen-

cies. A simple example of multiscale asymmetric function

(which we refer to as multiscale sawtooth function, MsSt)

with linear sequence of frequencies is given below:

MsStðtÞ ¼
XKmax

k¼1

Stð2p fkt; xÞ (13)

Here, St is a periodic sawtooth function with a frequency

fk 5 fmax/k, k 5 1,. . .,Kmax. Thus, the signal generated by

Eq. (13) is time-asymmetric for every frequency compo-

nent (mode) from fmin 5 fmax/Kmax to fmax. Multiscale

properties (those discussed in this article) of MsSt function

are similar to those of the WA function.6 Namely, by vary-

ing the asymmetry parameter x, we can continuously

change the multiscale time asymmetry of the MsSt func-

tion. Other multiscale measures (DFA and MsEn) of the

MsSt function are also independent from its asymmetry

parameter (except around two limiting cases x 5 0.0 and

x 5 1.0). It is also possible to construct piecewise nonlin-

ear multiscale asymmetric functions of the forms Eqs. (8)

or (13). One example is a multiscale asymmetric function

constructed from repeated exponents instead of the linear

functions used in the sawtooth function.

The applications of the proposed asymmetric Weier-

strass function are not limited to physiological signals.7

For example, WA-type signal is very similar to the multi-

scale fluctuations of temperature during long-term cli-

mate change [39] and fluctuations of TCP flow dynamics

in communication networks (see e.g., [40, 41]). Note that

a modified version (‘‘piecewise-linear analog’’) of the

Weierstrass function constructed from fully asymmetric

(x 5 0.0) sawtooth functions with logarithmically

decreasing frequencies (which is somewhat similar to

both WA and MsSt functions introduced in this article)

was used to construct a deterministic model of Burgers

turbulence [42]. We note possible applications of the WA

function as a model of rough surfaces (see e.g., [43, 44])

and of fractally asymmetric ratchet potentials (see e.g.,

[45, 46]).

Further, formal analysis is required to analytically

derive the properties of the asymmetric Weierstrass func-

tion and to understand the behavior of multiscale asym-

metry index. Specifically, the (in)dependence of MsAi

from fractal dimension (and other ‘‘complexity measures’’)

has to be studied rigorously. It is interesting to investigate

possible connections between WA functions and so-called

‘‘asymmetric fractals’’ introduced in [47]. Finally, we need

to reemphasize that all the results of this article were

obtained by using only one specific definition (MsAi

index [5, 6]) of multiscale asymmetry. One should calcu-

late other indices of multiscale asymmetry [7–9] for the

WA function to systematically compare the results and

clarify whether different indices capture different aspects

of multiscale asymmetry.
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