135 research outputs found
Recommended from our members
High energy resolution inelastic x-ray scattering at the SRI-CAT
This report is a combination of vugraphs and two papers. The vugraphs give information on the beamline at the APS for IXS and the science addressable by IXS. They also cover the 10 milli-eV resolution spectrometer and the 200 milli-eV resolution spectrometer. The first paper covers the performance of the focusing Ge(444) backscattering analyzers for the inelastic x-ray scattering. The second paper discusses inelastic x-ray scattering from TiC and Ti single crystals
WSi 2 /Si multilayer sectioning by reactive ion etching for multilayer Laue lens fabrication
SPIE Conference paper/talk presentation: Introduction: Reactive ion etching (RIE) has been employed in a wide range of fields such as semiconductor fabrication, MEMS (microelectromechanical systems), and refractive x-ray optics with a large investment put towards the development of deep RIE. Due to the intrinsic differing chemistries related to reactivity, ion bombardment, and passivation of materials, the development of recipes for new materials or material systems can require intense effort and resources. For silicon in particular, methods have been developed to provide reliable anisotropic profiles with good dimensional control and high aspect ratios1,2,3, high etch rates, and excellent material to mask etch selectivity..
Recommended from our members
Bent crystal analyzer without grooves for inelastic scattering -- first experimental results
A new design of a bent crystal analyzer for high energy resolution inelastic X-ray scattering has been recently proposed. It has been theoretically predicted that an analyzer with reflecting planes at a certain angle with respect to a crystal surface, bent with two different radii of curvature, will have the same energy resolution as a perfect crystal. The first experimental measurement obtained at the Advanced Photon Source of a bandwidth of such an analyzer is presented. The overall energy resolution of the analyzer and monochromator observed with a narrow beam is equal to 16.4 meV (FWHM) at 13.84 KeV
Pressure-dependent transition from atoms to nanoparticles in magnetron sputtering: Effect on WSi2 film roughness and stress
We report on the transition between two regimes from several-atom clusters to
much larger nanoparticles in Ar magnetron sputter deposition of WSi2, and the
effect of nanoparticles on the properties of amorphous thin films and
multilayers. Sputter deposition of thin films is monitored by in situ x-ray
scattering, including x-ray reflectivity and grazing incidence small angle
x-ray scattering. The results show an abrupt transition at an Ar background
pressure Pc; the transition is associated with the threshold for energetic
particle thermalization, which is known to scale as the product of the Ar
pressure and the working distance between the magnetron source and the
substrate surface. Below Pc smooth films are produced, while above Pc roughness
increases abruptly, consistent with a model in which particles aggregate in the
deposition flux before reaching the growth surface. The results from WSi2 films
are correlated with in situ measurement of stress in WSi2/Si multilayers, which
exhibits a corresponding transition from compressive to tensile stress at Pc.
The tensile stress is attributed to coalescence of nanoparticles and the
elimination of nano-voids.Comment: 16 pages, 10 figures; v3: published versio
Hard x ray spectroscopy and imaging by a reflection zone plate in the presence of astigmatism
The feasibility of an off axis x ray reflection zone plate to perform wavelength dispersive spectroscopy, on axis point focusing, and two dimensional imaging is demonstrated by means of one and the same diffractive optical element DOE at a synchrotron radiation facility. The resolving power varies between 30 and 400 in the range of 7.6 keV to 9.0 keV, with its maximum at the design energy of 8.3 keV. This result is verified using an adjustable entrance slit, by which horizontal H and vertical V focusing to 0.85 amp; 956;m H and 1.29 amp; 956;m V is obtained near the sagittal focal plane of the astigmatic configuration. An angular and axial scan proves an accessible field of view of at least 0.6 arcmin 0.8 arcmin and a focal depth of plus minus 0.86 mm. Supported by the grating efficiency of around 17.5 and a very short pulse elongation, future precision x ray fluorescence and absorption studies of transition metals at their K edge on an ultrashort timescale could benefit from our finding
Exciton spectroscopy of hexagonal boron nitride using non-resonant x-ray Raman scattering
We report non-resonant x-ray Raman scattering (XRS) measurements from
hexagonal boron nitride for transferred momentum from 2 to 9
along directions both in and out of the basal plane. A
symmetry-based argument, together with real-space full multiple scattering
calculations of the projected density of states in the spherical harmonics
basis, reveals that a strong pre-edge feature is a dominantly -type
Frenkel exciton with no other \textit{s}-, \textit{p}-, or \textit{d}-
components. This conclusion is supported by a second, independent calculation
of the \textbf{q}-dependent XRS cross-section based on the Bethe-Salpeter
equation
Recommended from our members
Diffuse scattering sheets in reciprocal space corresponding to Kiessig fringes for x-ray multilayers.
Synchrotron bending magnet radiation at the Advanced Photon Source was used to measure x-ray diffuse scattering of tungsten/carbon multilayers having period of 28 {angstrom}. Scattering not only near the first Bragg sheet in reciprocal space, but also near sheets corresponding to Kiessig fringes was simulated in the Born approximation. Full roughness propagation starting with the substrate was used in the simulation. We conclude that the differential equation that describes the kinetic roughening during sputtering is second order, i.e., the Langevin equation. For thermal-diffusion-related kinetic roughening either a third- or fourth-order equation should apply, and we conclude that thermal mechanisms for kinetic roughening need not be invoked
Takagi-Taupin Description of X-ray Dynamical Diffraction from Diffractive Optics with Large Numerical Aperture
We present a formalism of x-ray dynamical diffraction from volume diffractive
optics with large numerical aperture and high aspect ratio, in an analogy to
the Takagi-Taupin equations for strained single crystals. We derive a set of
basic equations for dynamical diffraction from volume diffractive optics, which
enable us to study the focusing property of these optics with various grating
profiles. We study volume diffractive optics that satisfy the Bragg condition
to various degrees, namely flat, tilted and wedged geometries, and derive the
curved geometries required for ultimate focusing. We show that the curved
geometries satisfy the Bragg condition everywhere and phase requirement for
point focusing, and effectively focus hard x-rays to a scale close to the
wavelength.Comment: 18 pages, 12 figure
The Birth and Death of Toxins with Distinct Functions: A Case Study in the Sea Anemone Nematostella
The cnidarian Nematostella vectensis has become an established lab model, providing unique opportunities for venom evolution research. The Nematostella venom system is multimodal: involving both nematocytes and ectodermal gland cells, which produce a toxin mixture whose composition changes throughout the life cycle. Additionally, their modes of interaction with predators and prey vary between eggs, larvae, and adults, which is likely shaped by the dynamics of the venom system. Nv1 is a major component of adult venom, with activity against arthropods (through specific inhibition of sodium channel inactivation) and fish. Nv1 is encoded by a cluster of at least 12 nearly identical genes that were proposed to be undergoing concerted evolution. Surprisingly, we found that Nematostella venom includes several Nv1 paralogs escaping a pattern of general concerted evolution, despite belonging to the Nv1-like family. Here, we show two of these new toxins, Nv4 and Nv5, are lethal for zebrafish larvae but harmless to arthropods, unlike Nv1. Furthermore, unlike Nv1, the newly identified toxins are expressed in early life stages. Using transgenesis and immunostaining, we demonstrate that Nv4 and Nv5 are localized to ectodermal gland cells in larvae. The evolution of Nv4 and Nv5 can be described either as neofunctionalization or as subfunctionalization. Additionally, the Nv1-like family includes several pseudogenes being an example of nonfunctionalization and venom evolution through birth-and-death mechanism. Our findings reveal the evolutionary history for a toxin radiation and point toward the ecological function of the novel toxins constituting a complex cnidarian venom.publishedVersio
- …