57 research outputs found

    Biased Discrete Symmetry Breaking and Fermi Balls

    Get PDF
    The spontaneous breaking of an approximate discrete symmetry is considered, with the resulting protodomains of true and false vacuum being separated by domain walls. Given a strong, symmetric Yukawa coupling of the real scalar field to a generic fermion, the domain walls accumulate a gas of fermions, which modify the domain wall dynamics. The splitting of the degeneracy of the ground states results in the false vacuum protodomain structures eventually being fragmented into tiny false vacuum bags with a Fermi gas shell (Fermi balls), that may be cosmologically stable due to the Fermi gas pressure and wall curvature forces, acting on the domain walls. As fermions inhabiting the domain walls do not undergo number density freeze out, stable Fermi balls exist only if a fermion anti-fermion asymmetry occurs. Fermi balls formed with a new Dirac fermion that possesses no standard model gauge charges provide a novel cold dark matter candidate.Comment: 10 pages, uuencoded file containing standard LaTeX and 1 PostScript figure, Albberta Thy-1-9

    Prediction of Beam Losses during Crab Cavity Quenches at the HL-LHC

    Full text link
    Studies of the crab cavities at KEKB revealed that the RF phase could shift by up to 50o within ~50 us during a quench; while the cavity voltage is still at approximately 75% of its nominal amplitude. If such a failure were to occur on the HL-LHC crab cavities, it is likely that the machine would sustain substantial damage to the beam line and surrounding infrastructure due to uncontrolled beam loss before the machine protection system could dump the beam. We have developed a low-level RF system model, including detuning mechanisms and beam loading, and use this to simulate the behaviour of a crab cavity during a quench, modeling the low-level RF system, detuning mechanisms and beam loading. We supplement this with measurement data of the actual RF response of the proof of principle Double-Quarter Wave Crab Cravity during a quench. Extrapolating these measurements to the HL-LHC, we show that Lorentz Force detuning is the dominant effect leading to phase shifts in the crab cavity during quenches; rather than pressure detuning which is expected to be dominant for the KEKB crab cavities. The total frequency shift for the HL-LHC crab cavities during quenches is expected to be about 460 Hz, leading to a phase shift of no more than 3o. The results of the quench model are read into a particle tracking simulation, SixTrack, and used to determine the effect of quenches on the HL-LHC beam. The quench model has been benchmarked against the KEKB experimental measurements. In this paper we present the results of the simulations on a crab cavity failure for HL-LHC as well as for the SPS and show that beam loss is negligible when using a realistic low-level RF response.Comment: 21 Pages, 22 figures, Submitted to PRA

    Prediction of Beam Losses during Crab Cavity Quenches at the High Luminosity LHC

    Get PDF
    Studies of the crab cavities at KEKB revealed that the RF phase could shift by up to 50o within ~50 ÎĽs during a quench; while the cavity voltage is still at approximately 75% of its nominal amplitude. If such a failure were to occur on the HL-LHC crab cavities, it is likely that the machine would sustain substantial damage to the beam line and surrounding infrastructure due to uncontrolled beam loss before the machine protection system could dump the beam. We have developed a low-level RF system model, including detuning mechanisms and beam loading, and use this to simulate the behaviour of a crab cavity during a quench, modeling the low-level RF system, detuning mechanisms and beam loading. We supplement this with measurement data of the actual RF response of the proof of principle Double-Quarter Wave Crab Cravity during a quench. Extrapolating these measurements to the HL-LHC, we show that Lorentz Force detuning is the dominant effect leading to phase shifts in the crab cavity during quenches; rather than pressure detuning which is expected to be dominant for the KEKB crab cavities. The total frequency shift for the HL-LHC crab cavities during quenches is expected to be about 460 Hz, leading to a phase shift of no more than 3o. The results of the quench model are read into a particle tracking simulation, SixTrack, and used to determine the effect of quenches on the HL-LHC beam. The quench model has been benchmarked against the KEKB experimental measurements. In this paper we present the results of the simulations on a crab cavity failure for HL-LHC as well as for the SPS and show that beam loss is negligible when using a realistic low-level RF response

    LHC Lumi Days 2012

    No full text
    luminosity scans, special runs, high-bet

    Direct Measurement of Thermoelectric Currents During Cool Down

    No full text
    In recent years there has been much discussion on thermoelectric effects and their role in flux expulsion during cool down of SRF cavities. Magnetic field is often measured to asses both flux expulsion as the cavity undergoes superconducting transition, and thermoelectric currents due to spatial thermal gradients. As a complementary view, in this paper we show direct measurement of the thermoelectric current independent from the expulsion measurement of the magnetic field. In our setup the azimuthally symmetric cavity is vertically installed and the thermal gradient is along the symmetry axis allowing to describe the cool down behavior of the thermoelectric current using simple coupled simulations

    Investigating the Effect of Inhomogeneous Resistivity on Bulk RRR and Heat Conductivity Using a Lattice Green's Functions Method

    No full text
    A method was developed to calculate the bulk RRR (residual resistivity ratio) which would be measured on a superconducting cavity or sample with an inhomogeneous resistivity and arbitrary geometry. The method involves modelling the object as a network of resistors and employs lattice Green's functions. A further adaptation of the method which allows the heat transport characteristics of such an object to be predicted is also described
    • …
    corecore