174 research outputs found

    Method and apparatus for detecting and determining event characteristics with reduced data collection

    Get PDF
    A method and apparatus for detecting and determining event characteristics such as, for example, the material failure of a component, in a manner which significantly reduces the amount of data collected. A sensor array, including a plurality of individual sensor elements, is coupled to a programmable logic device (PLD) configured to operate in a passive state and an active state. A triggering event is established such that the PLD records information only upon detection of the occurrence of the triggering event which causes a change in state within one or more of the plurality of sensor elements. Upon the occurrence of the triggering event, the change in state of the one or more sensor elements causes the PLD to record in memory which sensor element detected the event and at what time the event was detected. The PLD may be coupled with a computer for subsequent downloading and analysis of the acquired data

    Human HERC5 restricts an early stage of HIV-1 assembly by a mechanism correlating with the ISGylation of Gag

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification and characterization of several interferon (IFN)-induced cellular HIV-1 restriction factors, defined as host cellular proteins or factors that restrict or inhibit the HIV-1 life cycle, have provided insight into the IFN response towards HIV-1 infection and identified new therapeutic targets for HIV-1 infection. To further characterize the mechanism underlying restriction of the late stages of HIV-1 replication, we assessed the ability of IFNbeta-induced genes to restrict HIV-1 Gag particle production and have identified a potentially novel host factor called HECT domain and RCC1-like domain-containing protein 5 (HERC5) that blocks a unique late stage of the HIV-1 life cycle.</p> <p>Results</p> <p>HERC5 inhibited the replication of HIV-1 over multiple rounds of infection and was found to target a late stage of HIV-1 particle production. The E3 ligase activity of HERC5 was required for blocking HIV-1 Gag particle production and correlated with the post-translational modification of Gag with ISG15. HERC5 interacted with HIV-1 Gag and did not alter trafficking of HIV-1 Gag to the plasma membrane. Electron microscopy revealed that the assembly of HIV-1 Gag particles was arrested at the plasma membrane, at an early stage of assembly. The mechanism of HERC5-induced restriction of HIV-1 particle production is distinct from the mechanism underlying HIV-1 restriction by the expression of ISG15 alone, which acts at a later step in particle release. Moreover, HERC5 restricted murine leukemia virus (MLV) Gag particle production, showing that HERC5 is effective in restricting Gag particle production of an evolutionarily divergent retrovirus.</p> <p>Conclusions</p> <p>HERC5 represents a potential new host factor that blocks an early stage of retroviral Gag particle assembly. With no apparent HIV-1 protein that directly counteracts it, HERC5 may represent a new candidate for HIV/AIDS therapy.</p

    Clustering in A=10 nuclei

    Get PDF
    We discuss the identification and properties of the states that belong to the highly clustered rotational band in A=10 nuclei, 10Be, 10B(T=1) and 10C. The band is of interest because it may correspond to an exotic α:nn:α configuration

    Measurement of \u3csup\u3e17\u3c/sup\u3eF + p reactions with ANASEN

    Get PDF
    Reactions involving radioactive nuclei play an important role in stellar explosions, but those reactions involving short-lived nuclei have only limited experimental information available due to currently limited beam intensities. Several facilities are aiming to provide greater access to these unstable isotopes at higher beam intensities, but more efficient and selective techniques and devices are needed to properly study these important reactions. The Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN), a charged particle detector designed by Louisiana State University (LSU) and Florida State University (FSU), was created for this purpose. ANASEN is used to study the reactions important in the αp- and rp- processes with proton-rich exotic nuclei, providing essentially complete solid angle coverage through an array of 40 silicon-strip detectors backed with CsI scintillators, covering an area of roughly 1300 cm2. ANASEN also includes an active gas target/detector in a position-sensitive annular gas proportional counter, which allows direct measurement of (α,p) reactions in inverse kinematics. The first in-beam measurements with a partial implementation of ANASEN were performed at the RESOLUT radioactive beam facility of FSU during the summer of 2011. They included stable beam experiments and measurements of the 17F(p,p) 17F and 17F(p,α)14O reactions which are important to understanding the structure of 18Ne and the 14O(α,p)17F reaction rate. The performance of ANASEN and initial results from the 17F studies will be presented. © Published under licence by IOP Publishing Ltd

    Clustering in non-self-conjugate nuclei \u3csup\u3e10\u3c/sup\u3eBe and \u3csup\u3e18\u3c/sup\u3eO

    Get PDF
    Clustering phenomena in 10Be and 18O were studied by means of resonance elastic scattering of α-particles on 6He and 14C. Excitation functions for α+6He and α+14C were measured and detailed R-matrix analyses of the excitation functions was performed. We compare the experimental results with the predictions of modern theoretical approaches and discuss properties of cluster rotational bands

    Recent Nuclear Astrophysics Measurements using the TwinSol Separator

    Get PDF
    Many astrophysical events, such as novae and X-ray bursts, are powered by reactions with radioactive nuclei. Studying the properties of these nuclei in the laboratory can therefore further our understanding of these astrophysical explosions. The TwinSol separator at the University of Notre Dame has recently been used to produce intense (∼106 pps) beams of 17F. In this article, some of the first measurements with these beams are discussed

    New-Onset Atrial Fibrillation After Aortic Valve Replacement Comparison of Transfemoral, Transapical, Transaortic, and Surgical Approaches

    Get PDF
    ObjectivesThis study sought to determine the incidence of new-onset atrial fibrillation (AF) associated with different methods of isolated aortic valve replacement (AVR)—transfemoral (TF), transapical (TA), and transaortic (TAo) catheter-based valve replacement and conventional surgical approaches.BackgroundThe relative incidences of AF associated with the various access routes for AVR have not been well characterized.MethodsIn this single-center, retrospective cohort study, we evaluated a total of 231 consecutive patients who underwent AVR for degenerative aortic stenosis (AS) between March 2010 and September 2012. Patients with a history of paroxysmal, persistent, or chronic AF, with bicuspid aortic valves, and patients who died within 48 h after AVR were excluded. A total of 123 patients (53% of total group) qualified for inclusion. Data on documented episodes of new-onset AF, along with all clinical, echocardiographic, procedural, and 30-day follow-up data, were collated.ResultsAF occurred in 52 patients (42.3%). AF incidence varied according to the procedural method. AF occurred in 60% of patients who underwent surgical AVR (SAVR), in 53% after TA-TAVR, in 33% after TAo-TAVR cases, and 14% after TF-TAVR. The episodes occurred at a median time interval of 53 (25th to 75th percentile, 41 to 87) h after completion of the procedure. Procedures without pericardiotomy had an 82% risk reduction of AF compared with those with pericardiotomy (adjusted odds ratio: 0.18; 95% confidence interval: 0.05 to 0.59).ConclusionsAF was a common complication of AVR with a cumulative incidence of >40% in elderly patients with degenerative AS who underwent either SAVR or TAVR. AF was most common with SAVR and least common with TF-TAVR. Procedures without pericardiotomy were associated with a lower incidence of AF

    Measurement of F 17 (d,n) Ne 18 and the impact on the F 17 (p,γ) Ne 18 reaction rate for astrophysics

    Get PDF
    Background: The F17(p,γ)Ne18 reaction is part of the astrophysical hot CNO cycles that are important in astrophysical environments like novas. Its thermal reaction rate is low owing to the relatively high energy of the resonances and therefore is dominated by direct, nonresonant capture in stellar environments at temperatures below 0.4 GK. Purpose: An experimental method is established to extract the proton strength to bound and unbound states in experiments with radioactive ion beams and to determine the parameters of direct and resonant capture in the F17(p,γ)Ne18 reaction. Method: The F17(d,n)Ne18 reaction is measured in inverse kinematics using a beam of the short-lived isotope F17 and a compact setup of neutron, proton, γ-ray, and heavy-ion detectors called resoneut. Results: The spectroscopic factors for the lowest l=0 proton resonances at Ec.m.=0.60 and 1.17 MeV are determined, yielding results consistent within 1.4σ of previous proton elastic-scattering measurements. The asymptotic normalization coefficients of the bound 21+ and 22+ states in Ne18 are determined and the resulting direct-capture reaction rates are extracted. Conclusions: The direct-capture component of the F17(p,γ)Ne18 reaction is determined for the first time from experimental data on Ne18

    Determining the \u3csup\u3e14\u3c/sup\u3eO(α,p)\u3csup\u3e17\u3c/sup\u3eF astrophysical rate from Measurements at TwinSol

    Get PDF
    The 14O(α,p)17F reaction is an important trigger reaction to the α-p process in X-ray bursts. The most stringent experimental constraints on its astrophysical rate come from measurements of the time-inverse reaction, 17F(p,α)14O. Previous studies of this inverse reaction have sufficiently characterized the high-energy dependence of the cross section but there are still significant uncertainties at lower energies. A new measurement of the 17F(p,α)14O cross section is underway at the Twin Solenoid (TwinSol) facility at the University of Notre Dame using an in-flight secondary 17F beam. The initial results are promising but improvements are needed to complete the measurement. The initial data and plans for an improved measurement are presented in this manuscript
    corecore