75 research outputs found
Response
Response to articles critiquing "Just Surveillance: towards a normative theory of surveillance
Root rot of subterranean clover in W.A
Root rot of subterranean clover has occurred sporadically in the south west of Western Australia for a number of years.
In most seasons the disease has affected the clover paddocks of only a few farms, but in 1973 there was widespread pasture decline due to root rot in the South-West and south coastal districts.
At present the most promising approaches for minimising the effect of root rot appear to be the use of cultivation techniques and eventually the use of resistant varieties, or other pasture species
A transcriptome approach towards understanding the development of ripening capacity in Bartlett pears (Pyrus communis L.).
The capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree. The objective of this study was to characterize changes in Bartlett pear fruit physico-chemical properties and transcription profiles during fruit maturation leading to attainment of ripening capacity
Distribution and genetic variation of hymenolepidid cestodes in murid rodents on the Canary Islands (Spain)
<p>Abstract</p> <p>Background</p> <p>In the Canary Islands there are no previous data about tapeworms (Cestoda) of rodents. In order to identify the hymenolepidid species present in these hosts, a survey of 1,017 murine (349 <it>Rattus rattus</it>, 13 <it>Rattus norvegicus </it>and 655 <it>Mus musculus domesticus</it>) was carried out in the whole Archipelago. Molecular studies based on nuclear <it>ITS1 </it>and mitochondrial <it>COI </it>loci were performed to confirm the identifications and to analyse the levels of genetic variation and differentiation.</p> <p>Results</p> <p>Three species of hymenolepidids were identified: <it>Hymenolepis diminuta</it>, <it>Rodentolepis microstoma </it>and <it>Rodentolepis fraterna</it>. <it>Hymenolepis diminuta </it>(in rats) and <it>R. microstoma </it>(in mice) showed a widespread distribution in the Archipelago, and <it>R. fraterna </it>was the least spread species, appearing only on five of the islands. The hymenolepidids found on Fuerteventura, Lanzarote and La Graciosa were restricted to one area. The <it>COI </it>network of <it>H. diminuta </it>showed that the haplotypes from Lanzarote and Fuerteventura are the most distant with respect to the other islands, but clearly related among them.</p> <p>Conclusions</p> <p>Founder effects and biotic and abiotic factors could have played important role in the presence/absence of the hymenolepidid species in determined locations. The haplotypes from the eastern islands (Fuerteventura and Lanzarote) seem to have shared an ancestral haplotype very distant from the most frequent one that was found in the rest of the islands. Two colonization events or a single event with subsequent isolation and reduced gene flow between western-central and eastern islands, have taken place in the Archipelago. The three tapeworms detected are zoonotic species, and their presence among rodents from this Archipelago suggests a potential health risk to human via environmental contamination in high risk areas. However, the relatively low prevalence of infestations detected and the focal distribution of some of these species on certain islands reduce the general transmission risk to human.</p
Description of Hymenolepis microstoma (Nottingham strain): a classical tapeworm model for research in the genomic era
<p>Abstract</p> <p>Background</p> <p><it>Hymenolepis microstoma </it>(Dujardin, 1845) Blanchard, 1891, the mouse bile duct tapeworm, is a rodent/beetle-hosted laboratory model that has been used in research and teaching since its domestication in the 1950s. Recent characterization of its genome has prompted us to describe the specific strain that underpins these data, anchoring its identity and bringing the 150+ year-old original description up-to-date.</p> <p>Results</p> <p>Morphometric and ultrastructural analyses were carried out on laboratory-reared specimens of the 'Nottingham' strain of <it>Hymenolepis microstoma </it>used for genome characterization. A contemporary description of the species is provided including detailed illustration of adult anatomy and elucidation of its taxonomy and the history of the specific laboratory isolate.</p> <p>Conclusions</p> <p>Our work acts to anchor the specific strain from which the <it>H. microstoma </it>genome has been characterized and provides an anatomical reference for researchers needing to employ a model tapeworm system that enables easy access to all stages of the life cycle. We review its classification, life history and development, and briefly discuss the genome and other model systems being employed at the beginning of a genomic era in cestodology.</p
Recommended from our members
Interaction of plant growth regulators and reactive oxygen species to regulate petal senescence in wallflowers (Erysimum linifolium)
Background
In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways.
Results
In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect transcript abundance of WPS46, an auxin-induced gene.
Conclusions
A model for the interaction between cytokinins, ethylene, reactive oxygen species and auxin in the regulation of floral senescence in wallflowers is proposed. The combined increase in ethylene and reduction in cytokinin triggers the initiation of senescence and these two plant growth regulators directly or indirectly result in increased reactive oxygen species levels. A fall in conjugated auxin and/or the total auxin pool eventually triggers abscission
Reactive Oxygen Species Play a Role in the Infection of the Necrotrophic Fungi, Rhizoctonia solani in Wheat
Rhizoctonia solani is a nectrotrophic fungal pathogen that causes billions of dollars of damage to agriculture worldwide and infects a broad host range including wheat, rice, potato and legumes. In this study we identify wheat genes that are differentially expressed in response to the R. solani isolate, AG8, using microarray technology. A significant number of wheat genes identified in this screen were involved in reactive oxygen species (ROS) production and redox regulation. Levels of ROS species were increased in wheat root tissue following R. solani infection as determined by Nitro Blue Tetrazolium (NBT), 3,3'-diaminobenzidine (DAB) and titanium sulphate measurements. Pathogen/ROS related genes from R. solani were also tested for expression patterns upon wheat infection. TmpL, a R. solani gene homologous to a gene associated with ROS regulation in Alternaria brassicicola, and OAH, a R. solani gene homologous to oxaloacetate acetylhydrolase which has been shown to produce oxalic acid in Sclerotinia sclerotiorum, were highly induced in R. solani when infecting wheat. We speculate that the interplay between the wheat and R. solani ROS generating proteins may be important for determining the outcome of the wheat/R. solani interaction
- …