52 research outputs found

    Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond

    Get PDF
    2D transition metal dichalcogenides (TMDCs) are among the most exciting materials of today. Their layered crystal structures result in unique and useful electronic, optical, catalytic, and quantum properties. To realize the technological potential of TMDCs, methods depositing uniform films of controlled thickness at low temperatures in a highly controllable, scalable, and repeatable manner are needed. Atomic layer deposition (ALD) is a chemical gas-phase thin film deposition method capable of meeting these challenges. In this review, the applications evaluated for ALD TMDCs are systematically examined, including electronics and optoelectonics, electrocatalysis and photocatalysis, energy storage, lubrication, plasmonics, solar cells, and photonics. This review focuses on understanding the interplay between ALD precursors and deposition conditions, the resulting film characteristics such as thickness, crystallinity, and morphology, and ultimately device performance. Through rational choice of precursors and conditions, ALD is observed to exhibit potential to meet the varying requirements of widely different applications. Beyond the current state of ALD TMDCs, the future prospects, opportunities, and challenges in different applications are discussed. The authors hope that the review aids in bringing together experts in the fields of ALD, TMDCs, and various applications to eventually realize industrial applications of ALD TMDCs.Peer reviewe

    Mass spectrometry study of the temperature dependence of Pt film growth by atomic layer deposition

    Get PDF
    Insights into the temperature dependence of atomic layer deposition (ALD) of Pt using (methylcyclopentadienyl)trimethylplatinum, (MeCp)PtMe3, precursor and O2 are presented, based on a study of reaction products by time-resolved quadrupole mass spectrometry (QMS) measurements. Above 250°C, Pt ALD proceeds through unhindered O2 dissociation at the Pt surface, inducing complete and instantaneous combustion of the precursor ligands. Quantification of the QMS data revealed that at 300°C, approximately 20% of the C-atoms react during the precursor pulse, forming mainly CH4 (~18%) balanced by CO2 (~2%). The remaining 80% of the C-atoms are combusted during the O2 pulse. Time-resolved data indicated that the combustion reactions compete with the hydrogenation reactions for the available surface carbon. Combustion reactions were found to be dominant, provided that a sufficient amount of chemisorbed oxygen is available. When the temperature drops below 250°C, deposition becomes hindered by the presence of a carbonaceous surface layer of partially fragmented and dehydrogenated precursor ligands, formed during the precursor pulse. The carbonaceous layer limits dissociative chemisorption of O2 and hence combustion reactions (leading to CO2) whereas reduced surface reactivity also limits (de-)hydrogenation reactions (leading to CH4). Below 100°C, the carbonaceous layer fully prevents O2 dissociation and ALD of Pt cannot proceed

    Urine methanol concentration and alcohol hangover severity

    Get PDF
    BACKGROUND: Congeners are substances, other than ethanol, that are produced during fermentation. Previous research found that the consumption of congener-rich drinks contributes to the severity of alcohol hangover. Methanol is such a congener that has been related to alcohol hangover. Therefore, the aim of this study was to examine the relationship between urine methanol concentration and alcohol hangover severity. METHODS: N = 36 healthy social drinkers (22 females, 14 males), aged 18-30 years old, participated in a naturalistic study, comprising a hangover day and a control day (no alcohol consumed the previous day). N = 18 of them had regular hangovers (the hangover group), while the other N = 18 claimed to be hangover-immune (hangover-immune group). Overall hangover severity was assessed, and that of 23 individual hangover symptoms. Urine methanol concentrations on the hangover and control days were compared, and correlated to hangover (symptom) severity. RESULTS: Urine methanol concentration was significantly higher on hangover days compared to control days (p = 0.0001). No significant differences in urine methanol concentration were found between the hangover group and hangover-immune group. However, urine methanol concentration did not significantly correlate with overall hangover severity (r = -0.011, p = 0.948), nor with any of the individual hangover symptoms. These findings were observed also when analyzing the data separately for the hangover-immune group. In the hangover group, a significant correlation with urine methanol concentration was found only with vomiting (r = 0.489, p = 0.037). CONCLUSION: No significant correlation was observed between urine methanol concentration and hangover severity, nor with individual core hangover symptoms

    Direct-wire atomic layer deposition of high-quality Pt nanostructures : selective growth conditions and seed layer requirements

    No full text
    Electron beam-induced deposition (EBID) enables the direct-write patterning of metallic structures with sub-10 nm lateral resolution without the use of resist films or etching/lift-off steps but generally leads to material of poor quality and suffers from a low throughput. These shortcomings were mitigated in recent work by combining EBID with atomic layer deposition (ALD). This direct-write ALD technique comprises the patterning of a thin seed layer by EBID followed by selective thickening of the pattern by ALD. In this work, the throughput of direct-write ALD was drastically improved based on new insights into how the ALD growth initiates on EBID material, and in addition, the conditions for selective ALD growth were identified. The required electron dose was reduced by 2 orders of magnitude to 11 pC/”m2 by exposing the EBID seed layers to O2 in the ALD reactor just before the ALD building step. This improvement of the technique allows for nanopatterning with a throughput comparable to electron beam lithography (EBL)

    MoS2 Synthesized by Atomic Layer Deposition as Cu Diffusion Barrier

    Get PDF
    Abstract Miniaturization in integrated circuits requires that the Cu diffusion barriers located in interconnects between the Cu metal line and the dielectric material should scale down. Replacing the conventional TaN with a 2D transition metal dichalcogenide barrier potentially offers the opportunity to scale to 1–2 nm thick barriers. In this article, it is demonstrated that MoS2 synthesized by atomic layer deposition (ALD) can be employed as a Cu diffusion barrier. ALD offers a controlled growth process at back‐end‐of‐line (BEOL) compatible temperatures. MoS2 films of different thicknesses (i.e., 2.2, 4.3, and 6.5 nm) are tested by time‐dependent dielectric breakdown (TDDB) measurements, demonstrating that ALD‐grown MoS2 can enhance dielectric lifetime by a factor up to 17 at an electric field of 7 MV cm−1. Extrapolation to lower E‐fields shows that the MoS2 barriers prepared by ALD have at least an order of magnitude higher median‐time‐to‐failure during device operation at 0.5 MV cm−1 compared with MoS2 barriers prepared by other methods. By scaling the thickness further down in future work, the ALD MoS2 films can be applied as ultrathin Cu diffusion barriers

    The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20

    No full text
    We have previously defined a panel of fully human CD20 mAb. Most of these were unexpectedly efficient in their ability to recruit C1q to the surface of CD20-positive cells and mediate tumor lysis via activation of the classical pathway of complement. This complement-dependent cytotoxicity (CDC) potency appeared to relate to the unusually slow off-rate of these human Abs. However, we now present epitope-mapping data, which indicates that all human mAb bind a novel region of CD20 that may influence CDC potency. Epitope mapping, using both mutagenesis studies and overlapping 15-mer peptides of the extracellular loops of CD20, defined the amino acids required for binding by an extensive panel of mouse and human mAb. Binding by rituximab and mouse CD20 mAb, had an absolute requirement for alanine and proline at positions 170 and 172, respectively, within the large extracellular loop of CD20. Surprisingly, however, all of the human CD20 mAb recognize a completely novel epitope located N-terminally of this motif, also including the small extracellular loop of CD20. Thus, although off-rate may influence biological activity of mAb, another critical factor for determining CDC potency by CD20 mAb appears to be the region of the target molecule they recognize. We conclude that recognition of the novel epitope cooperates with slow off-rate in determining the activity of CD20 Ab in activation of complement and induction of tumor cell lysis
    • 

    corecore