1,894 research outputs found

    Budding and Domain Shape Transformations in Mixed Lipid Films and Bilayer Membranes

    Full text link
    We study the stability and shapes of domains with spontaneous curvature in fluid films and membranes, embedded in a surrounding membrane with zero spontaneous curvature. These domains can result from the inclusion of an impurity in a fluid membrane, or from phase separation within the membrane. We show that for small but finite line and surface tensions and for finite spontaneous curvatures, an equilibrium phase of protruding circular domains is obtained at low impurity concentrations. At higher concentrations, we predict a transition from circular domains, or "caplets", to stripes. In both cases, we calculate the shapes of these domains within the Monge representation for the membrane shape. With increasing line tension, we show numerically that there is a budding transformation from stable protruding circular domains to spherical buds. We calculate the full phase diagram, and demonstrate a two triple points, of respectively bud-flat-caplet and flat-stripe-caplet coexistence.Comment: 14 pages, to appear in Phys Rev

    A symmetrical method to obtain shear moduli from microrheology

    Full text link
    Passive microrheology typically deduces shear elastic loss and storage moduli from displacement time series or mean-squared displacement (MSD) of thermally fluctuating probe particles in equilibrium materials. Common data analysis methods use either Kramers-Kronig (KK) transformations or functional fitting to calculate frequency-dependent loss and storage moduli. We propose a new analysis method for passive microrheology that avoids the limitations of both of these approaches. In this method, we determine both real and imaginary components of the complex, frequency-dependent response function χ(ω)=χ′(ω)+iχ′′(ω)\chi(\omega) = \chi^{\prime}(\omega)+i\chi^{\prime\prime}(\omega) as direct integral transforms of the MSD of thermal particle motion. This procedure significantly improves the high-frequency fidelity of χ(ω)\chi(\omega) relative to the use of KK transformation, which has been shown to lead to artifacts in χ′(ω)\chi^{\prime}(\omega). We test our method on both model data and experimental data. Experiments were performed on solutions of worm-like micelles and dilute collagen solutions. While the present method agrees well with established KK-based methods at low frequencies, we demonstrate significant improvement at high frequencies using our symmetric analysis method, up to almost the fundamental Nyquist limit.Comment: 8 pages, 4 figure

    Mechanics and force transmission in soft composites of rods in elastic gels

    Get PDF
    We report detailed theoretical investigations of the micro-mechanics and bulk elastic properties of composites consisting of randomly distributed stiff fibers embedded in an elastic matrix in two and three dimensions. Recent experiments published in Physical Review Letters [102, 188303 (2009)] have suggested that the inclusion of stiff microtubules in a softer, nearly incompressible biopolymer matrix can lead to emergent compressibility. This can be understood in terms of the enhancement of the compressibility of the composite relative to its shear compliance as a result of the addition of stiff rod-like inclusions. We show that the Poisson's ratio ν\nu of such a composite evolves with increasing rod density towards a particular value, or {\em fixed point}, independent of the material properties of the matrix, so long as it has a finite initial compressibility. This fixed point is ν=1/4\nu=1/4 in three dimensions and ν=1/3\nu=1/3 in two dimensions. Our results suggest an important role for stiff filaments such as microtubules and stress fibers in cell mechanics. At the same time, our work has a wider elasticity context, with potential applications to composite elastic media with a wide separation of scales in stiffness of its constituents such as carbon nanotube-polymer composites, which have been shown to have highly tunable mechanics.Comment: 10 pages, 8 figure

    Stress relaxation in F-actin solutions by severing

    Full text link
    Networks of filamentous actin (F-actin) are important for the mechanics of most animal cells. These cytoskeletal networks are highly dynamic, with a variety of actin-associated proteins that control cross-linking, polymerization and force generation in the cytoskeleton. Inspired by recent rheological experiments on reconstituted solutions of dynamic actin filaments, we report a theoretical model that describes stress relaxation behavior of these solutions in the presence of severing proteins. We show that depending on the kinetic rates of assembly, disassembly, and severing, one can observe both length-dependent and length-independent relaxation behavior

    Inspiration for the Future: The Role of Inspiratory Muscle Training in Cystic Fibrosis.

    Get PDF
    Cystic fibrosis (CF) is an inherited, multi-system, life-limiting disease characterized by a progressive decline in lung function, which accounts for the majority of CF-related morbidity and mortality. Inspiratory muscle training (IMT) has been proposed as a rehabilitative strategy to treat respiratory impairments associated with CF. However, despite evidence of therapeutic benefits in healthy and other clinical populations, the routine application of IMT in CF can neither be supported nor refuted due to the paucity of methodologically rigorous research. Specifically, the interpretation of available studies regarding the efficacy of IMT in CF is hampered by methodological threats to internal and external validity. As such, it is important to highlight the inherent risk of bias that differences in patient characteristics, IMT protocols, and outcome measurements present when synthesizing this literature prior to making final clinical judgments. Future studies are required to identify the characteristics of individuals who may respond to IMT and determine whether the controlled application of IMT can elicit meaningful improvements in physiological and patient-centered clinical outcomes. Given the equivocal evidence regarding its efficacy, IMT should be utilized on a case-by-case basis with sound clinical reasoning, rather than simply dismissed, until a rigorous evidence-based consensus has been reached

    Structural features and nonlinear rheology of self-assembled networks of crosslinked semiflexible polymers

    Full text link
    Random networks of semiflexible filaments are common support structures in biology. Familiar examples include the fibrous matrices in blood clots, bacterial biofilms, and essential components of the cells and tissues of plants, animals, and fungi. Despite the ubiquity of these networks in biomaterials, we have only a limited understanding of the relationship between their structural features and highly strain-sensitive mechanical properties. In this work, we perform simulations of three-dimensional networks produced by the irreversible formation of crosslinks between linker-decorated semiflexible filaments. We characterize the structure of networks formed by a simple diffusion-dependent assembly process and measure their associated steady-state rheological features at finite temperature over a range of applied prestrains encompassing the strain-stiffening transition. We quantify the dependence of network connectivity on crosslinker availability and detail the associated connectivity dependence of both linear elasticity and nonlinear strain stiffening behavior, drawing comparisons with prior experimental measurements of the crosslinker concentration-dependent elasticity of actin gels

    The mechanical response of semiflexible networks to localized perturbations

    Full text link
    Previous research on semiflexible polymers including cytoskeletal networks in cells has suggested the existence of distinct regimes of elastic response, in which the strain field is either uniform (affine) or non-uniform (non-affine) under external stress. Associated with these regimes, it has been further suggested that a new fundamental length scale emerges, which characterizes the scale for the crossover from non-affine to affine deformations. Here, we extend these studies by probing the response to localized forces and force dipoles. We show that the previously identified nonaffinity length [D.A. Head et al. PRE 68, 061907 (2003).] controls the mesoscopic response to point forces and the crossover to continuum elastic behavior at large distances.Comment: 16 pages, 18 figures; substantial changes to text and figures to clarify the crossover to continuum elasticity and the role of finite-size effect
    • …
    corecore