262 research outputs found

    Computational Study Of Molecular Hydrogen In Zeolite Na-A. II. Density Of Rotational States And Inelastic Neutron Scattering Spectra

    Get PDF
    Part I of this series [J. Chem. Phys. 111, 7599 (1999)] describes a simulation of H(2) adsorbed within zeolite Na-A in which a block Lanczos procedure is used to generate the first several (9) rotational eigenstates of H(2), modeled as a rigid rotor, and equilibrated at a given temperature via Monte Carlo sampling. Here, we show that rotational states are strongly perturbed by the electrostatic fields in the solid. Wave functions and densities of rotational energy states are presented. Simulated neutron spectra are compared with inelastic neutron scattering data. Comparisons are made with IR spectra in which rotational levels may appear due to rovibrational coupling. (C) 2001 American Institute of Physics

    Microstructure mixing observations and finescale parameterizations in the Beaufort Sea

    Get PDF
    Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 19-35, https://doi.org/10.1175/JPO-D-19-0233.1.In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(10−10) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.This work was supported by NSF Grants PLR 14-56705 and PLR-1303791 and by NSF Graduate Research Fellowship Grant DGE-1650112

    The Alcohol Relapse Situation Appraisal Questionnaire: Development and Validation

    Get PDF
    Background: The role of cognitive appraisal of the threat of alcohol relapse has received little attention. A previous instrument, the Relapse Situation Appraisal Questionnaire (RSAQ), was developed to assess cocaine users’ primary appraisal of the threat of situations posing a high risk for cocaine relapse. The purpose of the present study was to modify the RSAQ in order to measure primary appraisal in situations involving a high risk for alcohol relapse. Methods: The development and psychometric properties of this instrument, the Alcohol Relapse Situation Appraisal Questionnaire (A-RSAQ), were examined with two samples of abstinent adults with alcohol abuse or dependence. Factor structure and validity were examined in Study 1 (N= 104). Confirmation of the factor structure and predictive validity was assessed in Study 2 (N= 159). Results: Results demonstrated construct, discriminant and predictive validity and reliability of the ARSAQ. Discussion: Results support the important role of primary appraisal of degree of risk in alcohol relapse situations

    Obesity is not associated with progression to end stage renal disease in patients with biopsy-proven glomerular diseases

    Get PDF
    Background: Body mass index (BMI) is associated with renal disease progression in unspecified CKD. The relationship between BMI and primary glomerular disease (GN) may be more complex. We aimed to evaluate the association between BMI and renal disease progression in patients with primary glomerular disease (GN). Methods: This was a single-centre retrospective cohort study performed in adult patients with biopsy-proven primary GN (excluding minimal change disease) from January 2000 to December 2015, with follow-up data until June 2017. BMI at time of biopsy was categorised as ≤25 kg/m2, > 25 to ≤30 kg/m2 and > 30 kg/m2. We used univariate and multivariate survival analyses to evaluate factors associated with progression to a composite endpoint of stage 5 CKD or renal replacement therapy (Major Adverse Renal Event - MARE) censoring for competing risk of death using Fine and Gray subdistribution hazards model. Results: We included 560 patients with biopsy-proven primary GN and available BMI data: 66.1% were male with median age 54.8 (IQR 41.1–66.2) years and BMI 28.2 (IQR 24.9–32.1) kg/m2. Those with BMI 25-30 kg/m2 (n = 210) and with BMI > 30 kg/m2 (n = 207) were older (p = 0.007) with higher systolic and diastolic blood pressures (p = 0.02 and 0.004 respectively) than those with BMI < 25 kg/m2 (n = 132). There was a greater proportion of focal segmental glomerulosclerosis in those with higher BMI (3.9% in BMI < 25 kg/m2, 7.9% in BMI 25–30 kg/m2 and 10.7% in BMI > 30 kg/m2 of biopsies (p = 0.01)), but similar proportions of other GN diagnoses across BMI groups. Baseline eGFR (p = 0.40) and uPCR (p = 0.17) were similar across BMI groups. There was no interaction between BMI and time to MARE (log-rank p = 0.98) or death (log-rank p = 0.42). Censoring for competing risk of death, factors associated with progression to MARE were: younger age, lower baseline eGFR and higher uPCR, but not BMI (SHR 0.99, 95%CI 0.97–1.01, p = 0.31) nor blood pressure or GN diagnosis. Conclusion: BMI was not associated with progression to MARE in this patient cohort with primary GN. Efforts should be directed to managing other known risk factors for CKD progression

    Submesoscale processes at shallow salinity fronts in the Bay of Bengal : observations during the winter monsoon

    Get PDF
    Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 479-509, doi:10.1175/JPO-D-16-0283.1.Lateral submesoscale processes and their influence on vertical stratification at shallow salinity fronts in the central Bay of Bengal during the winter monsoon are explored using high-resolution data from a cruise in November 2013. The observations are from a radiator survey centered at a salinity-controlled density front, embedded in a zone of moderate mesoscale strain (0.15 times the Coriolis parameter) and forced by winds with a downfront orientation. Below a thin mixed layer, often ≤10 m, the analysis shows several dynamical signatures indicative of submesoscale processes: (i) negative Ertel potential vorticity (PV); (ii) low-PV anomalies with O(1–10) km lateral extent, where the vorticity estimated on isopycnals and the isopycnal thickness are tightly coupled, varying in lockstep to yield low PV; (iii) flow conditions susceptible to forced symmetric instability (FSI) or bearing the imprint of earlier FSI events; (iv) negative lateral gradients in the absolute momentum field (inertial instability); and (v) strong contribution from differential sheared advection at O(1) km scales to the growth rate of the depth-averaged stratification. The findings here show one-dimensional vertical processes alone cannot explain the vertical stratification and its lateral variability over O(1–10) km scales at the radiator survey.S. Ramachandran acknowledges support from the National Science Foundation through award OCE 1558849 and the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17- 1-2355. A. Tandon acknowledges support from the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17-1-2355. J. T. Farrar and R. A. Weller were supported by the U.S. Office of Naval Research, Grant N00014-13-1-0453, to collect the UCTD data and process theUCTD and shipboard meteorological data. J. Nash, J. Mackinnon, and A. F. Waterhouse acknowledge support from the U. S. Office of Naval Research, Grants N00014-13-1-0503 and N00014-14-1-0455. E. Shroyer acknowledges support from the U. S. Office of Naval Research, Grants N00014-14-10236 and N00014-15- 12634. A. Mahadevan acknowledges support fromthe U. S. Office of Naval Research, Grant N00014-13-10451. A. J. Lucas and R. Pinkel acknowledge support from the U. S. Office of Naval Research, Grant N00014-13-1-0489.2018-08-2

    Three-Dimensional Double-Ridge Internal Tide Resonance in Luzon Strait

    Get PDF
    The three-dimensional (3D) double-ridge internal tide interference in the Luzon Strait in the South China Sea is examined by comparing 3D and two-dimensional (2D) realistic simulations. Both the 3D simulations and observations indicate the presence of 3D first-mode (semi)diurnal standing waves in the 3.6-km-deep trench in the strait. As in an earlier 2D study, barotropic-to-baroclinic energy conversion, flux divergence, and dissipation are greatly enhanced when semidiurnal tides dominate relative to periods dominated by diurnal tides. The resonance in the 3D simulation is several times stronger than in the 2D simulations for the central strait. Idealized experiments indicate that, in addition to ridge height, the resonance is only a function of separation distance and not of the along-ridge length; that is, the enhanced resonance in 3D is not caused by 3D standing waves or basin modes. Instead, the difference in resonance between the 2D and 3D simulations is attributed to the topographic blocking of the barotropic flow by the 3D ridges, affecting wave generation, and a more constructive phasing between the remotely generated internal waves, arriving under oblique angles, and the barotropic tide. Most of the resonance occurs for the first mode. The contribution of the higher modes is reduced because of 3D radiation, multiple generation sites, scattering, and a rapid decay in amplitude away from the ridge

    Double diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Fine, E., MacKinnon, J., Alford, M., Middleton, L., Taylor, J., Mickett, J., Cole, S., Couto, N., Boyer, A., & Peacock, T. Double diffusion, shear instabilities, and heat impacts of a pacific summer water intrusion in the Beaufort Sea. Journal of Physical Oceanography, 52(2), (2022): 189–203, https://doi.org/10.1175/jpo-d-21-0074.1.Pacific Summer Water eddies and intrusions transport heat and salt from boundary regions into the western Arctic basin. Here we examine concurrent effects of lateral stirring and vertical mixing using microstructure data collected within a Pacific Summer Water intrusion with a length scale of ∼20 km. This intrusion was characterized by complex thermohaline structure in which warm Pacific Summer Water interleaved in alternating layers of O(1) m thickness with cooler water, due to lateral stirring and intrusive processes. Along interfaces between warm/salty and cold/freshwater masses, the density ratio was favorable to double-diffusive processes. The rate of dissipation of turbulent kinetic energy (ε) was elevated along the interleaving surfaces, with values up to 3 × 10−8 W kg−1 compared to background ε of less than 10−9 W kg−1. Based on the distribution of ε as a function of density ratio Rρ, we conclude that double-diffusive convection is largely responsible for the elevated ε observed over the survey. The lateral processes that created the layered thermohaline structure resulted in vertical thermohaline gradients susceptible to double-diffusive convection, resulting in upward vertical heat fluxes. Bulk vertical heat fluxes above the intrusion are estimated in the range of 0.2–1 W m−2, with the localized flux above the uppermost warm layer elevated to 2–10 W m−2. Lateral fluxes are much larger, estimated between 1000 and 5000 W m−2, and set an overall decay rate for the intrusion of 1–5 years.This work was supported by ONR Grant N00014-16-1-2378 and NSF Grants PLR 14-56705 and PLR-1303791, NSF Graduate Research Fellowship Grant DGE-1650112, as well as by the Postdoctoral Scholar Program at Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship

    Global patterns of diapycnal mixing from measurements of the turbulent dissipation rate

    Get PDF
    The authors present inferences of diapycnal diffusivity from a compilation of over 5200 microstructure profiles. As microstructure observations are sparse, these are supplemented with indirect measurements of mixing obtained from (i) Thorpe-scale overturns from moored profilers, a finescale parameterization applied to (ii) shipboard observations of upper-ocean shear, (iii) strain as measured by profiling floats, and (iv) shear and strain from full-depth lowered acoustic Doppler current profilers (LADCP) and CTD profiles. Vertical profiles of the turbulent dissipation rate are bottom enhanced over rough topography and abrupt, isolated ridges. The geography of depth-integrated dissipation rate shows spatial variability related to internal wave generation, suggesting one direct energy pathway to turbulence. The global-averaged diapycnal diffusivity below 1000-m depth is O(10?4) m2 s?1 and above 1000-m depth is O(10?5) m2 s?1. The compiled microstructure observations sample a wide range of internal wave power inputs and topographic roughness, providing a dataset with which to estimate a representative global-averaged dissipation rate and diffusivity. However, there is strong regional variability in the ratio between local internal wave generation and local dissipation. In some regions, the depth-integrated dissipation rate is comparable to the estimated power input into the local internal wave field. In a few cases, more internal wave power is dissipated than locally generated, suggesting remote internal wave sources. However, at most locations the total power lost through turbulent dissipation is less than the input into the local internal wave field. This suggests dissipation elsewhere, such as continental margins

    Evaluation of an interactive, case-based review session in teaching medical microbiology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oklahoma State University-Center for Health Sciences (OSU-CHS) has replaced its microbiology wet laboratory with a variety of tutorials including a case-based interactive session called Microbial Jeopardy!. The question remains whether the time spent by students and faculty in the interactive case-based tutorial is worthwhile? This study was designed to address this question by analyzing both student performance data and assessing students' perceptions regarding the tutorial.</p> <p>Methods</p> <p>Both quantitative and qualitative data were used in the current study. Part One of the study involved assessing student performance using archival records of seven case-based exam questions used in the 2004, 2005, 2006, and 2007 OSU-CHS Medical Microbiology course. Two sample t-tests for proportions were used to test for significant differences related to tutorial usage. Part Two used both quantitative and qualitative means to assess student's perceptions of the Microbial Jeopardy! session. First, a retrospective survey was administered to students who were enrolled in Medical Microbiology in 2006 or 2007. Second, responses to open-ended items from the 2008 course evaluations were reviewed for comments regarding the Microbial Jeopardy! session.</p> <p>Results</p> <p>Both student performance and student perception data support continued use of the tutorials. Quantitative and qualitative data converge to suggest that students like and learn from the interactive, case-based session.</p> <p>Conclusion</p> <p>The case-based tutorial appears to improve student performance on case-based exam questions. Additionally, students perceived the tutorial as helpful in preparing for exam questions and reviewing the course material. The time commitment for use of the case-based tutorial appears to be justified.</p
    corecore