19 research outputs found

    The effect of additive noise on dynamical hysteresis

    Get PDF
    We investigate the properties of hysteresis cycles produced by a one-dimensional, periodically forced Langevin equation. We show that depending on amplitude and frequency of the forcing and on noise intensity, there are three qualitatively different types of hysteresis cycles. Below a critical noise intensity, the random area enclosed by hysteresis cycles is concentrated near the deterministic area, which is different for small and large driving amplitude. Above this threshold, the area of typical hysteresis cycles depends, to leading order, only on the noise intensity. In all three regimes, we derive mathematically rigorous estimates for expectation, variance, and the probability of deviations of the hysteresis area from its typical value.Comment: 30 pages, 5 figure

    Dynamical suppression of decoherence in two-state quantum systems

    Get PDF
    The dynamics of a decohering two-level system driven by a suitable control Hamiltonian is studied. The control procedure is implemented as a sequence of radiofrequency pulses that repetitively flip the state of the system, a technique that can be termed quantum "bang-bang" control after its classical analog. Decoherence introduced by the system's interaction with a quantum environment is shown to be washed out completely in the limit of continuous flipping and greatly suppressed provided the interval between the pulses is made comparable to the correlation time of the environment. The model suggests a strategy to fight against decoherence that complements existing quantum error-correction techniques.Comment: 15 pages, RevTeX style, 3 figures. Submitted to Phys. Rev.

    Periodic solutions to differential equations with delay

    No full text

    A proof of the minimum principle using flows

    No full text

    Degenerate parabolic equation and unilateral constraint systems

    No full text
    corecore