4,395 research outputs found

    What measurable zero point fluctuations can(not) tell us about dark energy

    Get PDF
    We show that laboratory experiments cannot measure the absolute value of dark energy. All known experiments rely on electromagnetic interactions. They are thus insensitive to particles and fields that interact only weakly with ordinary matter. In addition, Josephson junction experiments only measure differences in vacuum energy similar to Casimir force measurements. Gravity, however, couples to the absolute value. Finally we note that Casimir force measurements have tested zero point fluctuations up to energies of ~10 eV, well above the dark energy scale of ~0.01 eV. Hence, the proposed cut-off in the fluctuation spectrum is ruled out experimentally.Comment: 4 page

    Asymmetric supernova remnants generated by Galactic, massive runaway stars

    Full text link
    After the death of a runaway massive star, its supernova shock wave interacts with the bow shocks produced by its defunct progenitor, and may lose energy, momentum, and its spherical symmetry before expanding into the local interstellar medium (ISM). We investigate whether the initial mass and space velocity of these progenitors can be associated with asymmetric supernova remnants. We run hydrodynamical models of supernovae exploding in the pre-shaped medium of moving Galactic core-collapse progenitors. We find that bow shocks that accumulate more than about 1.5 Mo generate asymmetric remnants. The shock wave first collides with these bow shocks 160-750 yr after the supernova, and the collision lasts until 830-4900 yr. The shock wave is then located 1.35-5 pc from the center of the explosion, and it expands freely into the ISM, whereas in the opposite direction it is channelled into the region of undisturbed wind material. This applies to an initially 20 Mo progenitor moving with velocity 20 km/s and to our initially 40 Mo progenitor. These remnants generate mixing of ISM gas, stellar wind and supernova ejecta that is particularly important upstream from the center of the explosion. Their lightcurves are dominated by emission from optically-thin cooling and by X-ray emission of the shocked ISM gas. We find that these remnants are likely to be observed in the [OIII] lambda 5007 spectral line emission or in the soft energy-band of X-rays. Finally, we discuss our results in the context of observed Galactic supernova remnants such as 3C391 and the Cygnus Loop.Comment: 21 pages, 16 figure

    What Has Mathematics Done for Biology?

    Get PDF

    Group projector generalization of dirac-heisenberg model

    Full text link
    The general form of the operators commuting with the ground representation (appearing in many physical problems within single particle approximation) of the group is found. With help of the modified group projector technique, this result is applied to the system of identical particles with spin independent interaction, to derive the Dirac-Heisenberg hamiltonian and its effective space for arbitrary orbital occupation numbers and arbitrary spin. This gives transparent insight into the physical contents of this hamiltonian, showing that formal generalizations with spin greater than 1/2 involve nontrivial additional physical assumptions.Comment: 10 page

    Accurate photometry of extended spherically symmetric sources

    Full text link
    We present a new method to derive reliable photometry of extended spherically symmetric sources from {\it HST} images (WFPC2, ACS/WFC and NICMOS/NIC2 cameras), extending existing studies of point sources and marginally resolved sources. We develop a new approach to accurately determine intrinsic sizes of extended spherically symmetric sources, such as star clusters in galaxies beyond the Local Group (at distances <~ 20 Mpc), and provide a detailed cookbook to perform aperture photometry on such sources, by determining size-dependent aperture corrections (ACs) and taking sky oversubtraction as a function of source size into account. In an extensive Appendix, we provide the parameters of polynomial relations between the FWHM of various input profiles and those obtained by fitting a Gaussian profile (which we have used for reasons of computational robustness, although the exact model profile used is irrelevant), and between the intrinsic and measured FWHM of the cluster and the derived AC. Both relations are given for a number of physically relevant cluster light profiles, intrinsic and observational parameters. AC relations are provided for a wide range of apertures. Depending on the size of the source and the annuli used for the photometry, the absolute magnitude of such extended objects can be underestimated by up to 3 mag, corresponding to an error in mass of a factor of 15. We carefully compare our results to those from the more widely used DeltaMag method, and find an improvement of a factor of 3--40 in both the size determination and the AC.Comment: The paper is accepted for publication in A&A, Section 13 (Observational Techniques, published electronically). The published version contains one example table per appendix. A version of the paper containing all tables as well as all data in electronical form are available http://www.astro.physik.uni-goettingen.de/~galev/panders/Sizes_AC

    On the stability of bow shocks generated by red supergiants: the case of IRC-10414

    Full text link
    In this Letter, we explore the hypothesis that the smooth appearance of bow shocks around some red supergiants (RSGs) might be caused by the ionization of their winds by external sources of radiation. Our numerical simulations of the bow shock generated by IRC-10414 (the first-ever RSG with an optically detected bow shock) show that the ionization of the wind results in its acceleration by a factor of two, which reduces the difference between the wind and space velocities of the star and makes the contact discontinuity of the bow shock stable for a range of stellar space velocities and mass-loss rates. Our best fit model reproduces the overall shape and surface brightness of the observed bow shock and suggests that the space velocity and mass-loss rate of IRC-10414 are \approx50 kms1{\rm km} \, {\rm s}^{-1} and \approx10610^{-6} Myr1M_\odot \, {\rm yr}^{-1}, respectively, and that the number density of the local ISM is \approx3 cm3{\rm cm}^{-3}. It also shows that the bow shock emission comes mainly from the shocked stellar wind. This naturally explains the enhanced nitrogen abundance in the line-emitting material, derived from the spectroscopy of the bow shock. We found that photoionized bow shocks are \approx15-50 times brighter in optical line emission than their neutral counterparts, from which we conclude that the bow shock of IRC-10414 must be photoionized.Comment: 5 pages, 5 figures. Accepted for publication in MNRAS Letter

    Weak commutation relations of unbounded operators: nonlinear extensions

    Full text link
    We continue our analysis of the consequences of the commutation relation [S,T]=\Id, where SS and TT are two closable unbounded operators. The {\em weak} sense of this commutator is given in terms of the inner product of the Hilbert space \H where the operators act. {We also consider what we call, adopting a physical terminology}, a {\em nonlinear} extension of the above commutation relations

    Particle Impact Analysis of Bulk Powder During Pneumatic Conveyance

    Get PDF
    Fragmentation of powders during transportation is a common problem for manufacturers of food and pharmaceutical products. We illustrate that the primary cause of breakage is due to inter-particle collisions, rather than particle-wall impacts, and provide a statistical mechanics model giving the number of collisions resulting in fragmentation

    All in the Family: Child and Adolescent Weight Loss Surgery in the Context of Parental Weight Loss Surgery.

    Get PDF
    Background: Bariatric surgery is the most effective current treatment option for patients with severe obesity. More children and adolescents are having surgery, many whose parents have also had surgery. The current study examines whether parental surgery status moderates the association between perceived social support, emotional eating, food addiction and weight loss following surgery, with those whose parents have had surgery evidencing a stronger relationship between the psychosocial factors and weight loss as compared to their peers. Methods: Participants were 228 children and adolescents undergoing sleeve gastrectomy between 2014 and 2019 at one institution. Children and adolescents completed self-report measures of perceived family social support, emotional eating, and food addiction at their pre-surgical psychological evaluation. Change in body mass index (BMI) from pre-surgery to 3, 6, and 12 months post-surgery was assessed at follow-up clinic visits. Parents reported their surgical status as having had surgery or not. Results: There were no differences in perceived family support, emotional eating, or food addiction symptoms between those whose parents had bariatric surgery and those whose parents did not. There were some moderating effects of parent surgery status on the relationship between social support, emotional eating/food addiction, and weight loss following surgery. Specifically, at 3 months post-surgery, higher change in BMI was associated with lower perceived family support only in those whose parents had not had surgery. More pre-surgical food addiction symptoms were associated with greater weight loss at 3 months for those whose parents had not had surgery, whereas this finding was true only for those whose parents had surgery at 12 months post-surgery. Conclusions: Children and adolescents whose parents have had bariatric surgery may have unique associations of psychosocial factors and weight loss. More research is needed to determine mechanisms of these relationships

    Landslide-dammed paleolake perturbs marine sedimentation and drives genetic change in anadromous fish

    Get PDF
    Large bedrock landslides have been shown to modulate rates and processes of river activity by forming dams, forcing upstream aggradation of water and sediment, and generating catastrophic outburst floods. Less apparent is the effect of large landslide dams on river ecosystems and marine sedimentation. Combining analyses of 1-m resolution topographic data (acquired via airborne laser mapping) and field investigation, we present evidence for a large, landslide-dammed paleolake along the Eel River, CA. The landslide mass initiated from a high-relief, resistant outcrop which failed catastrophically, blocking the Eel River with an approximately 130-m-tall dam. Support for the resulting 55-km-long, 1.3-km^3 lake includes subtle shorelines cut into bounding terrain, deltas, and lacustrine sediments radiocarbon dated to 22.5 ka. The landslide provides an explanation for the recent genetic divergence of local anadromous (ocean-run) steelhead trout (Oncorhynchus mykiss) by blocking their migration route and causing gene flow between summer run and winter run reproductive ecotypes. Further, the dam arrested the prodigious flux of sediment down the Eel River; this cessation is recorded in marine sedimentary deposits as a 10-fold reduction in deposition rates of Eel-derived sediment and constitutes a rare example of a terrestrial event transmitted through the dispersal system and recorded offshore
    corecore