6,352 research outputs found

    Probing the AGN Unification Model at redshift z \sim 3 with MUSE observations of giant Lyα\alpha nebulae

    Full text link
    A prediction of the classic active galactic nuclei (AGN) unification model is the presence of ionisation cones with different orientations depending on the AGN type. Confirmations of this model exist for present times, but it is less clear in the early Universe. Here, we use the morphology of giant Lyα\alpha nebulae around AGNs at redshift z\sim3 to probe AGN emission and therefore the validity of the AGN unification model at this redshift. We compare the spatial morphology of 19 nebulae previously found around type I AGNs with a new sample of 4 Lyα\alpha nebulae detected around type II AGNs. Using two independent techniques, we find that nebulae around type II AGNs are more asymmetric than around type I, at least at radial distances r>30r>30~physical kpc (pkpc) from the ionizing source. We conclude that the type I and type II AGNs in our sample show evidence of different surrounding ionising geometries. This suggests that the classical AGN unification model is also valid for high-redshift sources. Finally, we discuss how the lack of asymmetry in the inner parts (r\lesssim30 pkpc) and the associated high values of the HeII to Lyα\alpha ratios in these regions could indicate additional sources of (hard) ionizing radiation originating within or in proximity of the AGN host galaxies. This work demonstrates that the morphologies of giant Lyα\alpha nebulae can be used to understand and study the geometry of high redshift AGNs on circum-nuclear scales and it lays the foundation for future studies using much larger statistical samples.Comment: 15 pages, 13 figures, accepted for publication in MNRA

    Thermal conductivity in the vicinity of the quantum critical endpoint in Sr3Ru2O7

    Get PDF
    Thermal conductivity of Sr3Ru2O7 was measured down to 40 mK and at magnetic fields through the quantum critical endpoint at H_c = 7.85 T. A peak in the electrical resistivity as a function of field was mimicked by the thermal resistivity. In the limit as T -> 0 K we find that the Wiedemann-Franz law is satisfied to within 5% at all fields, implying that there is no breakdown of the electron despite the destruction of the Fermi liquid state at quantum criticality. A significant change in disorder (from ρ0\rho_0(H=0T) = 2.1 μΩ\mu\Omega cm to 0.5 μΩ\mu\Omega cm) does not influence our conclusions. At finite temperatures, the temperature dependence of the Lorenz number is consistent with ferromagnetic fluctuations causing the non-Fermi liquid behavior as one would expect at a metamagnetic quantum critical endpoint.Comment: 4 figures, published in PR

    Quantum Kinks: Solitons at Strong Coupling

    Full text link
    We examine solitons in theories with heavy fermions. These ``quantum'' solitons differ dramatically from semi-classical (perturbative) solitons because fermion loop effects are important when the Yukawa coupling is strong. We focus on kinks in a (1+1)(1+1)--dimensional ϕ4\phi^4 theory coupled to fermions; a large-NN expansion is employed to treat the Yukawa coupling gg nonperturbatively. A local expression for the fermion vacuum energy is derived using the WKB approximation for the Dirac eigenvalues. We find that fermion loop corrections increase the energy of the kink and (for large gg) decrease its size. For large gg, the energy of the quantum kink is proportional to gg, and its size scales as 1/g1/g, unlike the classical kink; we argue that these features are generic to quantum solitons in theories with strong Yukawa couplings. We also discuss the possible instability of fermions to solitons.Comment: 21 pp. + 2 figs., phyzzx, JHU-TIPAC-92001

    Leukotriene C4 biosynthesis in isolated August rat peritoneal leukocytes

    Get PDF
    The mixed leukocyte population obtained from the peritoneum of the August rat is a potentially important experimental model of inherent eosinophilia that has not been well characterized. In the present study, isolated cell preparations generated a concentration-dependent release of leukotriene (LT) C4 when exposed to the Ca2+ ionophore A23187, reaching maximal stimulation at 5.0 μM. This response was inhibited by the 5-lipoxygenase activating protein antagonist MK-886 (0.1 μM), nominally Ca2+ and Mg2+-free incubation media and by activation of protein kinase C via phorbol 12-myristate 13-acetate (50 nM). These findings establish a model system for investigating LTC4 profiles contingent with innate peritoneal eosinophilia and are consistent with the hypothesis that cellular LTC4 biosynthesis is phosphoregulated
    corecore