6 research outputs found

    Trapped-particle precession and modes in quasisymmetric stellarators and tokamaks:a near-axis perspective

    Get PDF
    This paper presents the calculation of the bounce-averaged drift of trapped particles in a near-axis framework for axisymmetric and quasisymmetric magnetic fields that possess up-down and stellarator symmetry, respectively. This analytic consideration provides important insight on the dependence of the bounce-averaged drift on the geometry and stability properties of the field. In particular, we show that although the maximum- property is unattainable in quasisymmetric stellarators, one may approach it through increased plasma and triangular shaping, albeit going through a reduced precession scenario with potentially higher particle losses. The description of trapped particles allows us to calculate the available energy of trapped electrons analytically in two asymptotic regimes, providing insight into the behaviour of this measure of turbulence. It is shown that the available energy is intimately related to magnetohydrodynamics (MHD) stability, providing a potential synergy between this measure of gyrokinetic turbulence and MHD stability.</p

    Available energy of trapped electrons in Miller tokamak equilibria

    Get PDF
    Available energy (Æ), which quantifies the maximum amount of thermal energy that may be liberated and converted into instabilities and turbulence, has shown to be a useful metric for predicting saturated energy fluxes in trapped-electron-mode-driven turbulence. Here, we calculate and investigate the Æ in the analytical tokamak equilibria introduced by Miller et al. (Phys. Plasmas, vol. 5, issue, 4, 1998, pp. 973-978). The Æ of trapped electrons reproduces various trends also observed in experiments; negative shear, increasing Shafranov shift, vertical elongation and negative triangularity can all be stabilising, as indicated by a reduction in Æ, although it is strongly dependent on the chosen equilibrium. Comparing Æ with saturated energy flux estimates from the TGLF (trapped gyro-Landau fluid) model, we find fairly good correspondence, showcasing that Æ can be useful to predict trends. We go on to investigate Æ and find that negative triangularity is especially beneficial in vertically elongated configurations with positive shear or low gradients. Furthermore, we extract a gradient-threshold-like quantity from Æ and find that it behaves similarly to gyrokinetic gradient thresholds: it tends to increase linearly with magnetic shear, and negative triangularity leads to an especially high threshold. We next optimise the device geometry for minimal Æ and find that the optimum is strongly dependent on equilibrium parameters, for example, magnetic shear or pressure gradient. Investigating the competing effects of increasing the density gradient, the pressure gradient, and decreasing the shear, we find regimes that have steep gradients yet low Æ, and that such a regime is inaccessible in negative-triangularity tokamaks.</p

    Available energy of trapped electrons in Miller tokamak equilibria

    Get PDF
    Available energy (Æ), which quantifies the maximum amount of thermal energy that may be liberated and converted into instabilities and turbulence, has shown to be a useful metric for predicting saturated energy fluxes in trapped-electron-mode-driven turbulence. Here, we calculate and investigate the Æ in the analytical tokamak equilibria introduced by Miller et al. (Phys. Plasmas, vol. 5, issue, 4, 1998, pp. 973-978). The Æ of trapped electrons reproduces various trends also observed in experiments; negative shear, increasing Shafranov shift, vertical elongation and negative triangularity can all be stabilising, as indicated by a reduction in Æ, although it is strongly dependent on the chosen equilibrium. Comparing Æ with saturated energy flux estimates from the TGLF (trapped gyro-Landau fluid) model, we find fairly good correspondence, showcasing that Æ can be useful to predict trends. We go on to investigate Æ and find that negative triangularity is especially beneficial in vertically elongated configurations with positive shear or low gradients. Furthermore, we extract a gradient-threshold-like quantity from Æ and find that it behaves similarly to gyrokinetic gradient thresholds: it tends to increase linearly with magnetic shear, and negative triangularity leads to an especially high threshold. We next optimise the device geometry for minimal Æ and find that the optimum is strongly dependent on equilibrium parameters, for example, magnetic shear or pressure gradient. Investigating the competing effects of increasing the density gradient, the pressure gradient, and decreasing the shear, we find regimes that have steep gradients yet low Æ, and that such a regime is inaccessible in negative-triangularity tokamaks.</p

    Constructing precisely quasi-isodynamic magnetic fields

    No full text
    We present a novel method for numerically finding quasi-isodynamic stellarator magnetic fields with excellent fast-particle confinement and extremely small neoclassical transport. The method works particularly well in configurations with only one field period. We examine the properties of these newfound quasi-isodynamic configurations, including their transport coefficients, particle confinement and available energy for trapped-electron-instability-driven turbulence, as well as the degree to which they change when a finite pressure profile is added. We finally discuss the differences between the magnetic axes of the optimized solutions and their respective initial conditions, and conclude with the prospects for future quasi-isodynamic optimization.</p
    corecore