13 research outputs found

    Riders’ Effects on Horses—Biomechanical Principles with Examples from the Literature

    Get PDF
    Movements of the horse and rider in equestrian sports are governed by the laws of physics. An understanding of these physical principles is a prerequisite to designing and interpreting biomechanical studies of equestrian sports. This article explains and explores the biomechanical effects between riders and horses, including gravitational and inertial forces, turning effects, and characteristics of rider technique that foster synchronous movement with the horse. Rider symmetry, posture, and balance are discussed in the context of their relationship to rider skill level and their effects on the horse. Evidence is presented to support the feasibility of improving equestrian performance by off-horse testing followed by unmounted therapy and exercises to target the identified deficiencies. The elusive quality of harmony, which is key to a true partnership between riders and horses, is explored and described in biomechanical terms

    Trunk kinematics of experienced riders and novice riders during rising trot on a riding simulator

    Get PDF
    Asymmetry of horses and humans is widely acknowledged, but the influence of one upon the other during horse riding is poorly understood. Riding simulators are popular for education of beginners and analysis of rider biomechanics. This study compares trunk kinematics and saddle forces of 10 experienced riders (ER) and 10 novice riders (NR) performing rising trot on a simulator. Markers were placed on the 4th lumbar (L4) and 7th cervical (C7) spinous processes, and both acromion processes (AcP). Displacements in three axes of motion were tracked using 10 high-speed video cameras sampling at 240 Hz. Displacement trajectories at L4 and C7 were similar between both groups, displaying an asymmetrical butterfly pattern in the frontal plane, which reversed when changing diagonal. Comparison between groups, NR displayed greater vertical displacement and higher saddle impact forces at L4 (p=0.034), greater amplitude of medio-lateral displacement on the right diagonal between C7 and L4, and on the right diagonal while seated they rotated left (AcP) while the ER rotated right. Within group comparison demonstrated that on the right diagonal both groups produced significantly greater medio-lateral displacement at L4, and NR displayed significantly greater medio-lateral displacement between C7 and L4. On the left diagonal NR produced significantly greater vertical displacement and higher saddle impact forces. The findings of this study suggest that ER were more stable, symmetrical, and had lower impact force on the saddle. These issues could be addressed in beginners using a simulator to avoid unnecessary stresses on horses

    Differential rotational movement and symmetry values of the thoracolumbosacral region in high-level dressage horses when trotting.

    No full text
    High-level dressage horses regularly perform advanced movements, requiring coordination and force transmission between front and hind limbs across the thoracolumbosacral region. This study aimed at quantifying kinematic differences in dressage horses when ridden in sitting trot-i.e. with additional load applied in the thoracolumbar region-compared with trotting in-hand. Inertial sensors were glued on to the midline of the thoracic (T) and lumbar (L) spine at T5, T13, T18, L3 and middle of the left and right tubera sacrale of ten elite dressage horses (Mean±SD), age 11±1 years, height 1.70±0.10m and body mass 600±24kg; first trotted in-hand, then ridden in sitting trot on an arena surface by four Grand Prix dressage riders. Straight-line motion cycles were analysed using a general linear model (random factor: horse; fixed factor: exercise condition; covariate: stride time, Bonferroni post hoc correction: P<0.05). Differential roll, pitch and yaw angles between adjacent sensors were calculated. In sitting trot, compared to trotting in-hand, there was increased pitch (mean±S.D), (in-hand, 3.9 (0.5°, sitting trot 6.3 (0.3°, P = <0.0001), roll (in-hand, 7.7 (1.1°, sitting trot 11.6 (0.9°, P = 0.003) and heading values (in-hand, 4.2 (0.8), sitting trot 9.5 (0.6°, P = <0.0001) in the caudal thoracic and lumbar region (T18-L3) and a decrease in heading values (in-hand, 7.1 (0.5°, sitting trot 5.2 (0.3°, P = 0.01) in the cranial thoracic region (T5-T13). Kinematics of the caudal thoracic and lumbar spine are influenced by the rider when in sitting trot, whilst lateral bending is reduced in the cranial thoracic region. This biomechanical difference with the addition of a rider, emphasises the importance of observing horses during ridden exercise, when assessing them as part of a loss of performance assessment

    Differential Rotational Movement of the Thoracolumbosacral Spine in High-Level Dressage Horses Ridden in a Straight Line, in Sitting Trot and Seated Canter Compared to In-Hand Trot

    No full text
    Assessing back dysfunction is a key part of the investigative process of “loss of athletic performance” in the horse and quantitative data may help veterinary decision making. Ranges of motion of differential translational and rotational movement between adjacent inertial measurement units attached to the skin over thoracic vertebrae 5, 13 and 18 (T5, T13, T18) lumbar vertebra 3 (L3) and tuber sacrale (TS) were measured in 10 dressage horses during trot in-hand and ridden in sitting trot/canter. Straight-line motion cycles were analysed using a general linear model (random factor: horse; fixed factor: exercise condition; Bonferroni post hoc correction: p &lt; 0.05). At T5-T13 the differential heading was smaller in sitting trot (p ≤ 0.0001, 5.1° (0.2)) and canter (p ≤ 0.0001, 3.2° (0.2)) compared to trotting in-hand (7.4° (0.4)). Compared to trotting in-hand (3.4° (0.4)) at T18-L3 differential pitch was higher in sitting trot (p ≤ 0.0001, 7.5° (0.3)) and canter (p ≤ 0.0001, 6.3° (0.3)). At L3-TS, differential pitch was increased in canter (6.5° (0.5)) compared to trotting in-hand (p = 0.006, 4.9° (0.6)) and differential heading was higher in sitting trot (4° (0.2)) compared to canter (p = 0.02, 2.9° (0.3)). Compared to in-hand, reduced heading was measured in the cranial–thoracic area and increased in the caudal–thoracic and lumbar area. Pitch increased with ridden exercise from the caudal–thoracic to the sacral area

    Tack Fit and Use

    No full text

    Guidelines for the Measurement of Rein Tension in Equestrian Sport

    Get PDF
    Simple Summary: The reins are used to control speed and direction of the horse's movement through the application of tension by the rider. When the rider holds the reins with a constant light contact, the mechanics of each gait is associated with a cyclic pattern of head and neck movements that is revealed in rein tension oscillations that have a typical shape and repetition frequency in each gait. The effects of the rider's aids, rider imbalance and extraneous movements of the horse's head and neck are superimposed on the basic patterns of the gaits. Rein tension is of interest to scientists and horsemen alike. Tension is relatively easy to measure but the equipment, analytic techniques and reporting of rein tension vary greatly. This paper makes recommendations to guide the selection of suitable equipment and appropriate methods for the collection, analysis and reporting of rein tension data. The goals are to describe correct procedures and common pitfalls in the collection, analysis and reporting of rein tension data that will facilitate comparisons between different studies.Rein tension is relatively easy to measure, and the resulting data are useful for evaluating the interaction between horse and rider. To date, there have been a number of studies using different transducers, calibration methods and analytical techniques. The purpose of this paper is to make recommendations regarding the collection, analysis and reporting of rein tension data. The goal is to assist users in selecting appropriate equipment, choosing verified methods of calibration, data collection and analysis, and reporting their results consistently to facilitate comparisons between different studies. Sensors should have a suitable range and resolution together with a fast enough dynamic response, according to the gait, speed and type of riding for which they will be used. An appropriate calibration procedure is necessary before each recording session. A recording frequency of 50 Hz is adequate for most rein tension studies. The data may be analyzed using time-series methods or by extracting and analyzing discrete variables chosen in accordance with the study objectives. Consistent reporting facilitates comparisons between studies

    Experiences of Interdisciplinary Working from the Perspective of the Society of Master Saddlers Qualified Saddle Fitters

    No full text
    Horse owners seek the advice and support of a number of equestrian professionals in carrying out their duty of care for their animal. In some instances, these professionals form a multi-disciplinary team (MDT). The aim of this study was to explore the experiences of the Society of Master Saddlers’ qualified saddle fitters (SMSQSFs) working with other professionals and to understand the nature of inter-disciplinary working from an SMSQSF perspective. Semi-structured, one-to-one online interviews with fourteen SMSQSFs were completed. Areas explored included the nature of the participant’s client base; the frequency and nature of their interactions with other professionals; their perceptions of horse owner expectations of an MDT approach; and any benefits, challenges, and barriers to an MDT approach within an equestrian setting. Interviews were video and audio recorded (MS Teams), transcribed verbatim (Otter ai), and imported into qualitative data analysis software (NVivo, version 12). Data were analysed using thematic analysis. Six themes were identified: (1) effective communication; (2) multidisciplinary expectations; (3) horse welfare; (4) professionalism; (5) relationships; (6) working together. Communication was recognised as a crucial component of an effective MDT. Most participants valued and desired an MDT approach. They felt they had a key role to play within the equestrian MDT, not only in the prevention of deterioration in horse welfare but also in improving the functionality and performance of the horse–rider partnership. Effective MDT working was also seen as having benefits to SMSQSFs and other professional stakeholders alike, although time and financial constraints were identified as barriers to MTD working. The role of the horse owner within the MDT was unclear and potentially complex, and this and other factors such as the professional identity of the SMSQSF, personal relationships, and input from others outside of the MDT team were identified as challenges to effective MDT working. This present study found that SMSQSFs experience similar benefits and challenges to an MDT approach as seen in human healthcare settings. The role of the horse owner, communication, and professional recognition are indicated as pivotal to MDT effectiveness in achieving optimal saddle fit

    A Systematic Approach to Comparing Thermal Activity of the Thoracic Region and Saddle Pressure Distribution beneath the Saddle in a Group of Non-Lame Sports Horses

    No full text
    Thermography is a non-invasive method for measuring surface temperatures and may be a convenient way of identifying hypo/hyperthermic areas under a saddle that may be related to saddle pressures. A thermal camera quantified minimum/maximum/mean temperatures at specific locations (left/right) of the thoracic region at three-time points: (1) baseline; (2) post lunging; (3) post ridden exercise in eight non-lame sports horses ridden by the same rider. A Pliance (Novel) pressure mat determined the mean/peak saddle pressures (kPa) in the cranial and caudal regions. General linear mixed models with the horse as the random factor investigated the time point (fixed factor: baseline; lunge; ridden) and saddle fit (fixed factor: correct; wide; narrow) on thermal parameters with Bonferroni post hoc comparison. The saddle pressure data (grouped: saddle width) were assessed with an ANOVA and Tukey post hoc comparison (p ≤ 0.05). Differences between the saddle widths in the cranial/caudal mean (p = 0.05) and peak saddle pressures (p = 0.01) were found. The maximum temperatures increased post lunge (p ≤ 0.0001) and post ridden (p ≤ 0.0001) compared to the baseline. No difference between post lunge and post ridden exercise (all p ≥ 0.51) was found. The thermal activity does not appear to be representative of increased saddle pressure values. The sole use of thermal imaging for saddle fitting should be applied with caution
    corecore