303 research outputs found

    Asthma: Effect of genotype on Response to Therapy in the Emergency Department

    Get PDF
    Objective: We examined the effect of two β2-adrenoreceptor (β2AR) polymorphisms (A46G and C79G) in asthmatics presenting to the Emergency Department (ED) in relation to their response to standard therapy measured by change in Forced Expiratory Volume at one second (FEV1). Our hypothesis was that the polymorphisms in the β2AR gene would predict clinical response to therapy with 46G and 79C displaying decreased response to inhaled therapy. Methods: This was a pilot feasibility study of a convenience sample of patients seen in the ED for acute exacerbation of asthma. Baseline data collected included: age, gender, ethnicity, vital signs, baseline FEV1, body mass index (BMI), smoking history and medications taken prior to arrival to the ED. Patients received standard ED care and FEV1 was measured after each treatment. Blood was taken and genotyped. Results: Fifty-three patients were enrolled over a three-month period. Using mean improvement in FEV1 from baseline to the first treatment as the primary outcome of interest, we performed multivariable linear regression analyses, with the FEV1 change as the dependent variable. When modeled as an ordinal covariate representing the number of G alleles present, there was a significant positive trend for the C79G locus (p=0.035). Those who were GG homozygotes had a 0.284 L/min improvement in FEV1 (31%) after their initial albuterol treatment compared to 0.123 L/min (12%) in those who were CC homozygotes. This represents a 2.5 times relative difference and a 19% actual difference. Genotypes at the A46G locus were not associated with FEV1 change. Conclusion: In this pilot study of ED patients with acute asthma exacerbation, there was a significant effect of genotype on response to therapy

    Regional association of pCASL-MRI with FDG-PET and PiB-PET in people at risk for autosomal dominant Alzheimer's disease.

    Get PDF
    Autosomal dominant Alzheimer's disease (ADAD) is a small subset of Alzheimer's disease that is genetically determined with 100% penetrance. It provides a valuable window into studying the course of pathologic processes that leads to dementia. Arterial spin labeling (ASL) MRI is a potential AD imaging marker that non-invasively measures cerebral perfusion. In this study, we investigated the relationship of cerebral blood flow measured by pseudo-continuous ASL (pCASL) MRI with measures of cerebral metabolism (FDG PET) and amyloid deposition (Pittsburgh Compound B (PiB) PET). Thirty-one participants at risk for ADAD (age 39 ± 13 years, 19 females) were recruited into this study, and 21 of them received both MRI and FDG and PiB PET scans. Considerable variability was observed in regional correlations between ASL-CBF and FDG across subjects. Both regional hypo-perfusion and hypo-metabolism were associated with amyloid deposition. Cross-sectional analyses of each biomarker as a function of the estimated years to expected dementia diagnosis indicated an inverse relationship of both perfusion and glucose metabolism with amyloid deposition during AD development. These findings indicate that neurovascular dysfunction is associated with amyloid pathology, and also indicate that ASL CBF may serve as a sensitive early biomarker for AD. The direct comparison among the three biomarkers provides complementary information for understanding the pathophysiological process of AD

    Striatal Hypodensities, Not White Matter Hypodensities on CT, Are Associated with Late-Onset Depression in Alzheimer's Disease

    Get PDF
    This study examined whether there were neuroanatomical differences evident on CT scans of individuals with dementia who differed on depression history. Neuroanatomical variables consisted of visual ratings of frontal lobe deep white matter, subcortical white matter, and subcortical gray matter hypodensities in the CT scans of 182 individuals from the Study of Dementia in Swedish Twins who were diagnosed with dementia and had information on depression history. Compared to individuals with Alzheimer's disease and no depression, individuals with Alzheimer's disease and late-onset depression (first depressive episode at age 60 or over) had a greater number of striatal hypodensities (gray matter hypodensities in the caudate nucleus and lentiform nucleus). There were no significant differences in frontal lobe deep white matter or subcortical white matter. These findings suggest that late-onset depression may be a process that is distinct from the neurodegenerative changes caused by Alzheimer's disease

    Ambient Air Pollution and Atherosclerosis in Los Angeles

    Get PDF
    Associations have been found between long-term exposure to ambient air pollution and cardiovascular morbidity and mortality. The contribution of air pollution to atherosclerosis that underlies many cardiovascular diseases has not been investigated. Animal data suggest that ambient particulate matter (PM) may contribute to atherogenesis. We used data on 798 participants from two clinical trials to investigate the association between atherosclerosis and long-term exposure to ambient PM up to 2.5 μm in aerodynamic diameter (PM(2.5)). Baseline data included assessment of the carotid intima-media thickness (CIMT), a measure of subclinical atherosclerosis. We geocoded subjects’ residential areas to assign annual mean concentrations of ambient PM(2.5). Exposure values were assigned from a PM(2.5) surface derived from a geostatistical model. Individually assigned annual mean PM(2.5) concentrations ranged from 5.2 to 26.9 μg/m3 (mean, 20.3). For a cross-sectional exposure contrast of 10 μg/m3 PM(2.5), CIMT increased by 5.9% (95% confidence interval, 1–11%). Adjustment for age reduced the coefficients, but further adjustment for covariates indicated robust estimates in the range of 3.9–4.3% (p-values, 0.05–0.1). Among older subjects (≥60 years of age), women, never smokers, and those reporting lipid-lowering treatment at baseline, the associations of PM(2.5) and CIMT were larger with the strongest associations in women ≥60 years of age (15.7%, 5.7–26.6%). These results represent the first epidemiologic evidence of an association between atherosclerosis and ambient air pollution. Given the leading role of cardiovascular disease as a cause of death and the large populations exposed to ambient PM(2.5), these findings may be important and need further confirmation

    Continuous versus Cyclic Progesterone Exposure Differentially Regulates Hippocampal Gene Expression and Functional Profiles

    Get PDF
    This is the published version. Copyright 2012 Public Library of Science.This study investigated the impact of chronic exposure to continuous (CoP4) versus cyclic progesterone (CyP4) alone or in combination with 17β-estradiol (E2) on gene expression profiles targeting bioenergetics, metabolism and inflammation in the adult female rat hippocampus. High-throughput qRT-PCR analyses revealed that ovarian hormonal depletion induced by ovariectomy (OVX) led to multiple significant gene expression alterations, which were to a great extent reversed by co-administration of E2 and CyP4. In contrast, co-administration of E2 and CoP4 induced a pattern highly resembling OVX. Bioinformatics analyses further revealed clear disparities in functional profiles associated with E2+CoP4 and E2+CyP4. Genes involved in mitochondrial energy (ATP synthase α subunit; Atp5a1), redox homeostasis (peroxiredoxin 5; Prdx5), insulin signaling (insulin-like growth factor I; Igf1), and cholesterol trafficking (liver X receptor α subtype; Nr1h3), differed in direction of regulation by E2+CoP4 (down-regulation relative to OVX) and E2+CyP4 (up-regulation relative to OVX). In contrast, genes involved in amyloid metabolism (β-secretase; Bace1) differed only in degree of regulation, as both E2+CoP4 and E2+CyP4 induced down-regulation at different efficacy. E2+CyP4-induced changes could be associated with regulation of progesterone receptor membrane component 1(Pgrmc1). In summary, results from this study provide evidence at the molecular level that differing regimens of hormone therapy (HT) can induce disparate gene expression profiles in brain. From a translational perspective, confirmation of these results in a model of natural menopause, would imply that the common regimen of continuous combined HT may have adverse consequences whereas a cyclic combined regimen, which is more physiological, could be an effective strategy to maintain neurological health and function throughout menopausal aging

    Polymorphisms in genes involved in estrogen and progesterone metabolism and mammographic density changes in women randomized to postmenopausal hormone therapy: results from a pilot study

    Get PDF
    INTRODUCTION: Mammographic density is a strong independent risk factor for breast cancer, and can be modified by hormonal exposures. Identifying genetic variants that determine increases in mammographic density in hormone users may be important in understanding hormonal carcinogenesis of the breast. METHODS: We obtained mammograms and DNA from 232 postmenopausal women aged 45 to 75 years who had participated in one of two randomized, double-blind clinical trials with estrogen therapy (104 women, taking 1 mg/day of micronized 17β-estradiol, E2), combined estrogen and progestin therapy (34 women, taking 17β-estradiol and 5 mg/day of medroxyprogesterone acetate for 12 days/month) or matching placebos (94 women). Mammographic percentage density (MPD) was measured on baseline and 12-month mammograms with a validated computer-assisted method. We evaluated polymorphisms in genes involved in estrogen metabolism (catechol-O-methyltransferase (COMT (Val158Met)), cytochrome P450 1B1 (CYP1B1 (Val432Leu)), UDP-glucuronosyltransferase 1A1 (UGT1A1 (<7/≥ 7 TA repeats))) and progesterone metabolism (aldo-keto reductase 1C4 (AKR1C4 (Leu311Val))) with changes in MPD. RESULTS: The adjusted mean change in MPD was +4.6% in the estrogen therapy arm and +7.2% in the combined estrogen and progestin therapy arm, compared with +0.02% in the placebo arm (P = 0.0001). None of the genetic variants predicted mammographic density changes in women using estrogen therapy. Both the AKR1C4 and the CYP1B1 polymorphisms predicted mammographic density change in the combined estrogen and progestin therapy group (P < 0.05). In particular, the eight women carrying one or two low-activity AKR1C4 Val alleles showed a significantly greater increase in MPD (16.7% and 29.3%) than women homozygous for the Leu allele (4.0%). CONCLUSION: Although based on small numbers, these findings suggest that the magnitude of the increase in mammographic density in women using combined estrogen and progestin therapy may be greater in those with genetically determined lower activity of enzymes that metabolize estrogen and progesterone

    Air Pollution Particulate Matter Exposure and Chronic Cerebral Hypoperfusion and Measures of White Matter Injury in a Murine Model

    Get PDF
    BACKGROUND: Exposure to ambient air pollution particulate matter (PM) is associated with increased risk of dementia and accelerated cognitive loss. Vascular contributions to cognitive impairment are well recognized. Chronic cerebral hypoperfusion (CCH) promotes neuroinflammation and blood–brain barrier weakening, which may augment neurotoxic effects of PM. OBJECTIVES: This study examined interactions of nanoscale particulate matter (nPM; fine particulate matter with aerodynamic diameter [Formula: see text]) and CCH secondary to bilateral carotid artery stenosis (BCAS) in a murine model to produce white matter injury. Based on other air pollution interactions, we predicted synergies of nPM with BCAS. METHODS: nPM was collected using a particle sampler near a Los Angeles, California, freeway. Mice were exposed to 10 wk of reaerosolized nPM or filtered air (FA) for 150 h. CCH was induced by BCAS surgery. Mice (C57BL/6J males) were randomized to four exposure paradigms: a) FA, b) nPM, c) [Formula: see text] , and d) [Formula: see text]. Behavioral outcomes, white matter injury, glial cell activation, inflammation, and oxidative stress were assessed. RESULTS: The joint [Formula: see text] group exhibited synergistic effects on white matter injury (2.3× the additive nPM and [Formula: see text] scores) with greater loss of corpus callosum volume on T2 magnetic resonance imaging (MRI) (30% smaller than FA group). Histochemical analyses suggested potential microglial-specific inflammatory responses with synergistic effects on corpus callosum C5 immunofluorescent density and whole brain nitrate concentrations (2.1× and 3.9× the additive nPM and [Formula: see text] effects, respectively) in the joint exposure group. Transcriptomic responses (RNA-Seq) showed greater impact of [Formula: see text] than individual additive effects, consistent with changes in proinflammatory pathways. Although nPM exposure alone did not alter working memory, the [Formula: see text] cohort demonstrated impaired working memory when compared to the [Formula: see text] group. DISCUSSION: Our data suggest that nPM and CCH contribute to white matter injury in a synergistic manner in a mouse model. Adverse neurological effects may be aggravated in a susceptible population exposed to air pollution. https://doi.org/10.1289/EHP879

    Progesterone Receptors: Form and Function in Brain

    Get PDF
    Emerging data indicate that progesterone has multiple non-reproductive functions in the central nervous system to regulate cognition, mood, inflammation, mitochondrial function, neurogenesis and regeneration, myelination and recovery from traumatic brain injury. Progesterone-regulated neural responses are mediated by an array of progesterone receptors (PR) that include the classic nuclear PRA and PRB receptors and splice variants of each, the seven transmembrane domain 7TMPRβ and the membrane-associated 25-Dx PR (PGRMC1). These PRs induce classic regulation of gene expression while also transducing signaling cascades that originate at the cell membrane and ultimately activate transcription factors. Remarkably, PRs are broadly expressed throughout the brain and can be detected in every neural cell type. The distribution of PRs beyond hypothalamic borders, suggests a much broader role of progesterone in regulating neural function. Despite the large body of evidence regarding progesterone regulation of reproductive behaviors and estrogen-inducible responses as well as effects of progesterone metabolite neurosteroids, much remains to be discovered regarding the functional outcomes resulting from activation of the complex array of PRs in brain by gonadally and/or glial derived progesterone. Moreover, the impact of clinically used progestogens and developing selective PR modulators for targeted outcomes in brain is a critical avenue of investigation as the non-reproductive functions of PRs have far-reaching implications for hormone therapy to maintain neurological health and function throughout menopausal aging
    corecore