18 research outputs found

    Design approaches to more energy efficient engines

    Get PDF
    The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines

    The energy efficient engine project

    Get PDF
    The Energy Efficient Engine Project is directed at providing, by 1984, the advanced technologies which could be used for a generation of fuel conservative turbofan engines. The project is conducted through contracts with the General Electric Company and Pratt and Whitney Aircraft. The scope of the entire project and the current status of these efforts are summarized. A description of the preliminary designs of the fully developed engines is included and the potential benefits of these advanced engines, as well as highlights of some of the component technology efforts conducted to date, are discussed

    Medication errors at hospital admission and discharge in Type 1 and 2 diabetes

    Get PDF
    International audienceAIMS: To assess the prevalence and characteristics of medication errors at hospital admission and discharge in people with Type 1 and Type 2 diabetes, and identify potential risk factors for these errors. METHODS: This prospective observational study included all people with Type 1 (n~=~163) and Type 2 diabetes (n~=~508) admitted to the Diabetology-Department of the University Hospital of Montpellier, France, between 2013 and 2015. Pharmacists conducted medication reconciliation within 24~h of admission and at hospital discharge. Medication history collected from different sources (patient/family interviews, prescriptions/medical records, contact with community pharmacies/general practitioners/nurses) was compared with admission and discharge prescriptions to detect unintentional discrepancies in medication indicating involuntary medication changes. Medication errors were defined as unintentional medication discrepancies corrected by physicians. Risk factors for medication errors and serious errors (i.e. errors that may cause harm) were assessed using logistic regression. RESULTS: A total of 322 medication errors were identified and were mainly omissions. Prevalence of medication errors in Type 1 and Type 2 diabetes was 21.5% and 22.2% respectively at admission, and 9.0% and 12.2% at discharge. After adjusting for age and number of treatments, people with Type 1 diabetes had nearly a twofold higher odds of having medication errors (odds ratio (OR) 1.72, 95% confidence interval (CI) 1.02-2.94) and serious errors (OR 2.17, 95% CI 1.02-4.76) at admission compared with those with Type 2 diabetes. CONCLUSIONS: Medication reconciliation identified medication errors in one third of individuals. Clinical pharmacists should focus on poly-medicated individuals, but also on other high-risk people, for example, those with Type 1 diabetes

    Flat Low-Loss Silicon Gradient Index Lens for Millimeter and Submillimeter Wavelengths

    Get PDF
    We present the design, simulation, and planned fabrication process of a flat high resistivity silicon gradient index (GRIN) lens for millimeter and submillimeter wavelengths with very low absorption losses. The gradient index is created by sub wavelength holes whose size increases with the radius of the lens. The effective refractive index created by the subwavelength holes is constant over a very wide bandwidth, allowing the fabrication of achromatic lenses up to submillimeter wavelengths. The designed GRIN lens was successfully simulated and shows an expected efficiency better than that of a classic silicon plano-concave spherical lens with approximately the same thickness and focal length. Deep reactive ion etching (DRIE) and wafer-bonding of several patterned wafers will be used to realize our first GRIN lens prototype

    Genetic Modifier Screens Reveal New Components that Interact with the Drosophila Dystroglycan-Dystrophin Complex

    Get PDF
    The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-Ξ² and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought

    Protein 4.1B Contributes to the Organization of Peripheral Myelinated Axons

    Get PDF
    Neurons are characterized by extremely long axons. This exceptional cell shape is likely to depend on multiple factors including interactions between the cytoskeleton and membrane proteins. In many cell types, members of the protein 4.1 family play an important role in tethering the cortical actin-spectrin cytoskeleton to the plasma membrane. Protein 4.1B is localized in myelinated axons, enriched in paranodal and juxtaparanodal regions, and also all along the internodes, but not at nodes of Ranvier where are localized the voltage-dependent sodium channels responsible for action potential propagation. To shed light on the role of protein 4.1B in the general organization of myelinated peripheral axons, we studied 4.1B knockout mice. These mice displayed a mildly impaired gait and motility. Whereas nodes were unaffected, the distribution of Caspr/paranodin, which anchors 4.1B to the membrane, was disorganized in paranodal regions and its levels were decreased. In juxtaparanodes, the enrichment of Caspr2, which also interacts with 4.1B, and of the associated TAG-1 and Kv1.1, was absent in mutant mice, whereas their levels were unaltered. Ultrastructural abnormalities were observed both at paranodes and juxtaparanodes. Axon calibers were slightly diminished in phrenic nerves and preterminal motor axons were dysmorphic in skeletal muscle. Ξ²II spectrin enrichment was decreased along the axolemma. Electrophysiological recordings at 3 post-natal weeks showed the occurrence of spontaneous and evoked repetitive activity indicating neuronal hyperexcitability, without change in conduction velocity. Thus, our results show that in myelinated axons 4.1B contributes to the stabilization of membrane proteins at paranodes, to the clustering of juxtaparanodal proteins, and to the regulation of the internodal axon caliber

    The Effects of Sex and Strain on <i>Pneumocystis murina</i> Fungal Burdens in Mice

    No full text
    Many preclinical studies of infectious diseases have neglected experimental designs that evaluate potential differences related to sex with a concomitant over-reliance on male model systems. Hence, the NIH implemented a monitoring system for sex inclusion in preclinical studies. Methods: Per this mandate, we examined the lung burdens of Pneumocystis murina infection in three mouse strains in both male and female animals at early, mid, and late time points. Results: Females in each strain had higher infection burdens compared to males at the later time points. Conclusion: Females should be included in experimental models studying Pneumocystis spp

    Multilayer Etched Antireflective Structures for Silicon Vacuum Windows

    No full text
    Future instruments employing cryogenic detectors for millimeter and submillimeter astronomy applications can benefit greatly from silicon vacuum windows with broadband antireflection treatment. Silicon is an ideal optical material at these wavelengths due to numerous attractive properties, including low loss, high refractive index, and high strength. However, its high index (n = 3.4) necessitates antireflection (AR) treatment, which has proven a major challenge, especially for the multilayer treatments required for wide spectral bandwidths. We address this challenge by developing a wide-bandwidth integral AR structure for silicon vacuum windows using a novel fabrication technique, tuning the effective refractive index of each AR layer using deep reactive ion etching (DRIE) and using wafer bonding to assemble the structure. We present the progress we have made in designing and fabricating such vacuum windows from 100-mm-diameter silicon wafers. We have previously demonstrated a two-layer AR structure for windows over a 1.6:1 bandwidth and are currently fabricating a four-layer coating designed for a 4:1 bandwidth. We have also converged on a design for a six-layer structure optimized to give βˆ’ 20 dB reflection between 80 and 420 GHz (5.25:1 bandwidth), which will be useful for future multicolor Sunyaev–Zel’dovich (SZ) observations
    corecore