1,619 research outputs found

    Non-integrability of density perturbations in the FRW universe

    Full text link
    We investigate the evolution equation of linear density perturbations in the Friedmann-Robertson-Walker universe with matter, radiation and the cosmological constant. The concept of solvability by quadratures is defined and used to prove that there are no "closed form" solutions except for the known Chernin, Heath, Meszaros and simple degenerate ones. The analysis is performed applying Kovacic's algorithm. The possibility of the existence of other, more general solutions involving special functions is also investigated.Comment: 13 pages. The latest version with added references, and a relevant new paragraph in section I

    Parallel algorithm and architecture for the control of kinematically redundant manipulators, A

    Get PDF
    Includes bibliographical references (pages 413-414).Kinematically redundant manipulators are inherently capable of more dexterous manipulation due to their additional degrees of freedom. To achieve this dexterity, however, one must be able to efficiently calculate the most desirable configuration from the infinite number of possible configurations that satisfy the end-effector constraint. It has been previously shown that the singular value decomposition (SVD) plays a crucial role in doing such calculations. In this work, a parallel algorithm for calculating the SVD is incorporated into a computational scheme for solving the equations of motion for kinematically redundant systems. This algorithm, which generalizes the damped least squares formulation to include solutions that utilize null-space projections and task prioritization as well as augmented or extended Jacobians, is then implemented on a simple linear array of processing elements. By taking advantage of the error bounds on the perturbation of the SVD, it is shown that an array of only four AT&T DSP chips can result in control cycle times of less than 3 ms for a seven degree-of-freedom manipulator

    Computing the topology of configuration space

    Get PDF
    Includes bibliographical references.In this work, an algorithm is developed for generating the connectivity graph for a class of articulated manipulators. The algorithm is based upon the ability to determine whether two distinct obstacles in configuration space intersect. The efficiency of the test which is developed lies in the ability to determine the intersection relation by evaluating the curves which describe the configuration space obstacles at only a small number of points.This work was supported by the National Science Foundation under grant CDR 8803017 to the Engineering Research Center for Intelligent Manufacturing Systems

    Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. V.: A Massive Jupiter orbiting the very low metallicity giant star BD+03 2562 and a possible planet around HD~103485

    Get PDF
    We present two evolved stars from the TAPAS (Tracking Advanced PlAnetary Systems) with HARPS-N project devoted to RV precision measurements of identified candidates within the PennState - Torun Centre for Astronomy Planet Search. Evolved stars with planets are crucial to understand the dependency of the planet formation mechanism on the mass and metallicity of the parent star and to study star-planet interactions. The paper is based on precise radial velocity (RV) measurements, for HD 103485 we collected 57 epochs over 3317 days with the Hobby-Eberly Telescope and its High Resolution Spectrograph and 18 ultra-precise HARPS-N data over 919 days. For BD+03 2562 we collected 46 epochs of HET data over 3380 days and 19 epochs of HARPS-N data over 919 days. We present the analysis of the data and the search for correlations between the RV signal and stellar activity, stellar rotation and photometric variability. Based on the available data, we interpret the RV variations measured in both stars as Keplerian motion. Both stars have masses close to Solar (1.11 and 1.14), very low metallicities ([Fe/H]=-0.50 and -0.71), and, both have Jupiter planetary mass companions (m sin i=7 and 6.4 Mj), in close to terrestrial orbits (1.4 and 1.3~au), with moderate eccentricities (e=0.34 and 0.2). However, we cannot totally exclude that the signal in the case of HD~103485 is due to rotational modulation of active regions. Based on the current data, we conclude that BD+03 2562 has a bona fide planetary companion while for HD 103485 we cannot totally exclude that the best explanation for the RV signal modulations is not the existence of a planet but stellar activity. If, the interpretation remains that both stars have planetary companions they represent systems orbiting very evolved stars with very low metallicities, a challenge to the conditions required for the formation of massive giant gas planets.Comment: Acepted A&A 12 pages, 11 figure
    corecore