
Computing the Topology of
Configuration Space

John J. Fox Anthony A. Maciejewski

School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

Thus if the configuration space obstacles F and G inter
sect, they must do so somewhere along these lines. There
fore, to check for a possible intersection, one can simply
check to see if both curves representing the obstacles F
and G intersect with the lines defined by (1).

Rather than attempting to explicitly calculate the
intersection points of the cspace obstacles with the lines
defined in (1), a task which is nontrivial, a test will be
developed for determining whether or not such an inter
section exists. Recall that the minimum and maximum

II. PRELIMINARIES

In this section, an algorithm for testing for intersec
tions between cspace obstacles is derived. Details on the
algorithm, its limitations and an application to planning
the motions of articulated manipulators are found in [5].

A. An Intersection Test for Cspace Obstacles

Consider the obstacles labeled F and G in Fig. 1. For
the reasons discussed in [5], an intersection test need only
concern itself with contact with both obstacles along the
second link. For this to occur, the orientation of the sec
ond link must be parallel to the line connecting the two
obstacles. Since the orientation of the second link is de
termined by 81 +82 , this condition leads to the constraint

widely investigated approach to the solution of the Find
Space problem [3]. This approach is originally found in [8]
in which free space is partitioned based upon the types of
contacts which the robot can make with its environment.

The approach described by this paper is similar to
those summarized in [3] however, it is novel in that there
is no explicit calculation of free space, a process which
is extremely time consuming. Instead, the manipulator's
free space is described implicitly by characterizing a topo
logical property of obstacles, namely, their connectivity.

The algorithm presented here is also strongly related
to work in which the boundaries of configuration space ob
stacles are analytically described [1], [6]. The fundamental
difference in the mathematical representation used here is
that the curves describing configuration space obstacles
are not only described by their positions but also by the
tangents to these curves.

Abstract-In this work, an algorithm is developed
for generating the connectivity graph for a class of ar
ticulated manipulators. The algorithm is based upon
the ability to determine whether two distinct obsta
cles in configuration space intersect. The efficiency
of the test which is developed lies in the ability to
determine the intersection relation by evaluating the
curves which describe the configuration space obsta
cles at only a small number of points.

I. INTRODUCTION

A . Motivation

The problem of planning collision-free paths for ma
nipulators has received an enormous amount of attention
over the past decade. A large segment of this research
derives from the seminal work of Lozano-Perez on config
uration space representations [4]. This approach can be
grossly described as being comprised of two phases: the
representation of those robot configurations which do not
result in a collision, i.e. FindSpace, and the search for a
path within this representation which connects the initial
and final configurations, i.e. FindPath.

A standard approach to FindSpace has been to em
ploy a structure called a "connectivity graph." In this
representation, free space is partitioned into a set of path
connected regions. A graph structure is then generated
which represents these regions and their adjacency.

In this paper, a well known sweep line algorithm for
generating the set of intersections for n line segments [7] is
modified to generate the connectivity graph for a class of
planar manipulators. The algorithm is based upon the de
velopment of an efficient method for determining whether
two cspace obstacles intersect. Although a seemingly re
strictive class, by adding an orthogonal axis to the ma
nipulators being studied, the fundamental results of the
work remain the same but now a significant number of
the manipulators found in industry can be modeled.

B. Relationship to Previous Work

The notion of representing free space via a structure
similar to a connectivity graph is, perhaps, the single most

Manuscript received Aug. 1, 1992. This work was supported

by the National Science Foundation under grant CDR 8803017 to

the Engineering Research Center for Intelligent Manufacturing Sys

tems.

8 + 8 - t -1 YF - YG
1 2- an .

ZF-ZG
(1)

0-7803-0720-8/92 $3.00 @I992 IEEE

~ -

Fig. 1 Examples of the application of the intersection test.

Part (a) shows an example of the test failing, and part

(b) shows it succeeding.

II. +11, = lU,,-·IIt'-/Iu
Ir -zu

-tr/2

CONAGURATIOHSPACE
&2'1<

CONAGURATIOH SPACE
92&1<

9.'-1< 1-------+---.iI-~-~_ _4

91. -I< 1- +-_H..-~...__--_I91.I<(b)

(a)

III. DESCRIPTION OF THE ALGORITHM

A. Sweep Line Algorithms

A particularly efficient approach to certain problems
in computational geometry is the Sweep Line Algorithm
[7]. Although the details of applying this technique vary
from application to application, the basic principals re
main the same. Namely, a hypothetical line is swept
through the data thereby dividing the problem domain
into two subspaces. These subspaces are distinguished by
the fact that the solution which has already been estab
lished in one subspace is unaffected by the generation of
the solution to the other halfspace. The principal advan
tages of the sweep line approach is that it provides a fairly
straightforward mechanism for organizing geometric data
and, typically, the resulting algorithms are fairly efficient.

The principal mechanism for establishing the flow of
control within such an algorithm is an event queue con
sisting of those points at which the sweep line will halt.

(2)

distances from a curve to a line will occur at the points
along the curve at which the tangent matches the slope
of the line. It has been shown in [5] that the tangent to a
configuration space obstacle is given by

-/2 = -1 (3)
12 + 11 cos ()2

the solution of which is given by ()2 = ±71"/2. Therefore,
to determine ifthe lines defined by (1) intersect a config
uration space curve one must evaluate the curve at only
two points, i.e. those at ()2 = ±71"/2, and check to see if
they bracket any of the lines defined by (1). If the value
of ' 2 is greater than the actual link length at O2 = ±71"/2
then the end points of the curve should be used in their
intersection test. Proof of the necessity and sufficiency of
this condition can be found in [2].

B. Asswmptions and Tenninology

Throughout the description of the algorithm, the fol
lowing terminology and conventions will be used. A par
ticular point (01,02) in free space has an ordered pair of
bounding obstacles. These obstacles are defined by inter
secting all of the obstacles in the environment with the
line O2 = 02. The obstacle whose intersection with this
line takes place at the maximal 01 such that 01 < 01
is termed the left bounding obstacle. If no such obsta
cle exists, then the boundary of cspace corresponding to
the minimum along the ()2 axis will be considered the left
bounding obstacle. The right bounding obstacle is defined
in an analogous manner. Calculating the bounding obsta
cles can, in general, be performed once the extrema of the
cspace obstacles are known and the pairs of intersecting
obstacles have been determined. It does not require the
evaluation of all of the obstacles at a particular O2 ,

A region will be defined as a subspace offree space for
which every point has the same pair of bounding obstacles
and, given any two points in the region, a collision-free
path exists which does not· consist of points from another
region. An implication of this definition is that multiple
regions which have the same pair of bounding obstacles
may exist. Two regions, R1 and R2 , will be considered
to be adjacent if for any points PI E R I and P2 E R 2 , a
collision-free path exists between PI and P2 which consists
entirely of points in R1 U R2 .

Finally, for the purposes of illustration, the manipu
lator has been assumed to have the arbitrary joint limits
of ±71", however, this work is independent of this assump
tion.

Thus, setting the tangent equation of the configuration
space curve equal to the slope of the constraint equation
(1), results in

BEST COpy AVAILABLE
32

In the context of this paper, these events are those con
figurations at which new regions must be introduced and
are, therefore, the upper and lower extrema of the config
uration space obstacles and the points at which obstacles
intersect.

The approach taken in this paper will be a variation
on the sweep line approach and is based upon an algo
rithm for determining the set of intersections of a group
of line segments [7]. Although the general approach taken
will be that of sweeping a line through the data and gener
ating the connectivity graph, the algorithm will not have
the property that the line partitions the data space into
two subspaces which have the properties described above.
This is a direct result of not having explicitly calculated
the intersection points of obstacles. Rather, as will be
shown, the information used to determine the intersection
predicate as defined in Section II will be used to estab
lish relative information regarding the (J2 abscissa of the
intersection point.

Throughout the remainder of the paper, events cor
responding to the upper extrema of obstacles will be re
ferred to as split events. Reaching a lower extrema of an
obstacle will be termed a merge event, and, finally, the
intersection of two obstacles will be referred to as an in
tersect event. Pseudo code for split events and intersect
events is found in Figs. 2 and 3, respectively. Although a
merge event is sufficiently similar to a split event that it
does not require an independent explanation, it should be
noted that in some ways it is considerably simpler since
it doesn't require the introduction of intersection events.
Although the pseudocode which has been provided has
assumed that the (J2 abscissa of all of the events are dis
tinct, it is a straightforward modification to handle the
more general case.

There are four data structures which have been em
ployed in the pseudocode provided: locations, nodes, ob
stacles and the event queue. Locations are points in
cspace represented as two dimensional vectors. Nodes are
structures which correspond to nodes in the connectivity
graph. They consist of three data fields: the left and right
bounding obstacles, LBO and RBO; and a list of the ad
jacent nodes. Obstacles can, for all practical purposes,
be considered to be integers corresponding to obstacles in
the workspace. Finally, the event queue is implemented
as a LIFO stack.

Within the pseudocode, the existence of a number
of subroutines has been assumed. The simplest of these,
Build'Eventf}, combines the pointers to the two inter
secting obstacles into a structure suitable for being placed
on the event queue. FindBoundingObsO returns the
two bounding obstacles of the region corresponding to the
input node. This operation is performed primarily by ex
amining the extrema of the cspace obstacles and through

33

knowledge of the existence of intersections between obsta
cles. Left Nodef}, RightNodeO and CorrectNodeO
return the nodes to which the algorithm is about to add
children. The principal information used to determine this
node is a table consisting of a list of each region which ap
pears along the right or left side of a particular obstacle.
Choosing the correct node is performed by incorporating
knowledge of those intersection events in which the obsta
cle played a part.

Prior to beginning the line sweep, a preprocessing
stage calculates the extrema 'of each obstacle and the in
formation required for performing the intersection test of
Section II. Sorting the extrema in order of decreasing (J2

yields the initial event queue. Physically, this corresponds
to having swept through the data without having consid
ered the possibility of intersecting obstacles. Finally, the
connectivity graph is initialized with a single node corre
sponding to the northern highway.

SplitEvent(Obs, Loc)
begin

[LeftObs, RightObs] = FindBoundingObs(Loc);
Node = CorrectNode(Obs, LeftObs, RightObs);
Left.LBO = LeftObs; Left.RBO = Obs;
Right.LBO =Obs; Right.RBO =RightObs;
Left.Adj ={Node}; Right.Adj ={Node};
N ode.Adj = N ode.Adj U {Left, Right};
IntersectSet = {Obstacle such that

Obstacle E PrevObstacles and
Obstacle intersects Obs};

Sort IntersectSet
for each Intersect E IntersectSet

Push(BuildEvent(Intersect), EventQueue)
PrevObstacles = PrevObstacles U {Obs};

end

Fig. 2 Pseudocode for the splint event procedure.

IutersectEvent(LeftObs, RightObs)
begin

OldLeftNode = LeftNode(LeftObs);
OldRightNode = RightNode(RightObs);
Left.LBO = OldLeftNode.LBO;
Left.RBO = RightObs;
M iddle.LBO = RightObs;
Middle.RBO = LeftObs;
Right.LBO = LeftObs;
Right.RBO = OldRightNode.RBO ;
Left.Adj = {OldLeftNode};
Right.Adj = {OldRightNode};
OldLeftNode.Adj = OldLeft.Adj U {Left};
OldRightNode.Adj = OldRightNode.Adj

U{Right};
end

Fig. 3 Pseudocode for the intersect event procedure.

Before proceeding, consider for a moment the impli
cations of placing intersection events on the event queue
immediately after processing the split event. The advan
tage of placing the events on the queue in this manner is
that it avoids the issue of explicitly calculating the inter
section points. Sorting the events with the approach de
scribed in Appendix A ensures that the intersection events
for a particular obstacle are sorted by the ()2 abscissa of
the intersection point, however, it provides minimal infor
mation regarding the relative location of the intersection
point with respect to either the extrema of other obstacles
or intersections which do not directly involve the newly
introduced obstacle. This has two principal effects.

First, under certain conditions bounding obstacles of
a particular region may be impossible to determine with
out ambiguity. Fortunately, the nature of the configura
tion space obstacles is such that there can never be more
than two different possible sets of bounding obstacles for
a particular region which is generated by this algorithm.
Rather than attempting to disambiguate between the two
alternatives by iterating along one of the bounding obsta
cles, the region is labeled as ambiguous and is resolved
only if needed for the FindPath procedure. The key piece
of information which is obtained is that the region exists
and can serve a part in generating a path, not necessar
ily the fact that its has some particular pair of bounding
obstacles.

The second problem is a bit more subtle and does not
affect the final outcome of the algorithm. In particular,
it is possible that an intersection event will be processed
prior to the introduction of an obstacle which should serve
as a bounding obstacle for the nodes which result. The
only effect of this is that the bounding obstacles of the
incorrect node and its children must be modified and an
edge must be redirected within the graph.

IV. IMPLEMENTATION RESULTS

The purpose of this section is twofold. First, a sim
ple example is provided which illustrates the nature of
the algorithm and demonstrates the effects of processing
the different events. Second, complexity results and some
timing results are provided so that the reader can better
evaluate the algorithm.

A. A Simple Example

Figs. 4 (a)-(f) illustrate the execution of this algo
rithm on a simple example. In Figs. 4 (a) and (b), the
obstacles have been drawn with a dashed line to reflect
the fact at this stage they have not yet been reached by
the sweeping line. In Figs. 4 (b)-(e), the horizontal dashed
line represents the location of the sweep line correspond
ing to the event which has just been processed. Fig. 4 (f)
shows the resulting connectivity graph. In this figure the

34

dashed lines illustrate the partitioning of free space into
regions.

To illustrate the processing that is required, we shall
consider in detail the processing which occurs between
the situation depicted in Fig. 4(b) and the situation in
Fig.4(c). As shown in Fig. 4(b), the algorithm has just
finished processing the split event corresponding to the
introduction of Obstacle 1. The result of this operation
was the addition of nodes 2 and 3 to the connectivity
graph along with the appropriate edges.

At this point, the next event in the queue is a split
event corresponding to the upper extrema of Obstacle
2. The left and right bounding obstacles, LeftObs and
RightObs, are determined to be TLMIN and Obstacle 1,
respectively. As a result, the split event will introduce
two nodes which are children of the node currently corre
sponding to this pair of bounding obstacles, i.e. Node 2.
Fig. 4(c) shows the definition of these two new nodes.

Next, the subset of obstacles which are already un
der consideration and which intersect the new obstacle
are determined. In the example provided, the only inter
section which takes place is with Obstacle 1. In general,
this set would then be sorted as discussed in Appendix
A and intersection events pushed onto the event queue.
Finally, some bookkeeping takes place with regards to up
dating the CurrentNode and PrevObstacles informa
tion. When the processing is completed, there is an inter
section event corresponding to the intersection of Obsta
cles 1 and 2 on the top of the event queue. The algorithm
would then proceed in a similar manner until the event
queue is empty, resulting in the connectivity graph shown
in Fig. 4(f).

B. Worst-Case Time Complexity

The worst-case input for this algorithm can be seen to
be one in which each obstacle intersects every other obsta
cle. Assuming there are n obstacles, this scenario results
in n SplitEventO's, n(n

2
- 1) IntersectEventO's, and n

MergeEventO's. Executing IntersectEventO can be
performed in O(n) time. Executing MergeEventO can
be performed in O(n) time, since this routine is domi
nated by the amount of time required to determine the
bounding obstacles of a location in cspace. In the worst
case, this requires examining information regarding each
of the obstacles. Executing the j'th SplitEventO can
be performed in OU logj) time, since it is dominated by
sorting the set of intersection events. Also, the algorithm
requires an O(n log n) preprocessing stage for generating
the information required to perform the intersection test
and to generate the initial event queue. Hence, the overall
worst case time complexity of the algorithm is O(n 3) and
is dominated by the processing of the intersection events.

Cbs 1

CONFIGURATION SPACE
92=K

91 =-Jt

CONFIGURATION SPACE
92 K=.................................

1•
'.'.'.
'. .\\\

";

'" Cbs 2

'.
••..

'.'.'.Cbs 1

Fig. 4(a) Initialization.
CONFIGURATION SPACE

92=K

Fig.4(d) After the Intersect event.
CONFIGURATION SPACE

92=K

1----------l--------~91=K

.....r::- 2

1- -\-__-\-__4 ~91 =K

3
Node 3:
LBOE Obs 1
RBO. T1_MAX

Nod. 2:
LBO a Tl_MIN
ABO. Cbs 1

Cbs 1 Cbs 1

92=-K 92=-K

Fig. 4(b) After the first Split event.
CONFIGURATION SPACE

92=K

Fig.4(e) After the first Merge event.
CONFIGURATION SPACE

92=K

91=-K

Node 4: 4
LBO. Tl_MIN
RBO=Cbs2

Cbs 1

91 =-It

92::;-. 92=-1t

Fig.4(c) After the second Split event. Fig. 4(f) Solution.

35

APPENDIX

02,A - ()2,B < 01,B - ()l,A (A.3)

B2,A - B2,B < -1 (A.2)
B1,A - B1,B

Since 02,A - 02,B < 0, ()l,A - 01,B > 0 Therefore,

(A.4)

(A.5)

•

[5] A. A. Maciejewski and J. J. Fox, "Path planning and
the topology of configuration space," to appear in
IEEE Trans. Robotics Automat.

[6] W. Meyer and P. Benedict, "Path planning and the
geometry of joint space obstacles," in Proc. 1988
IEEE Int. Con! Robotics Automat., Philadelphia,
PA, April 24-29, 1988, pp. 215-219.

[7] F. P. Preparata and M. I. Shamos, Computational
Geometry: An Introduction, Springer-Verlag, New
York, N.Y., 1985.

[8] J .T. Schwartz and M. Sharir, "On the piano movers'
problem:I. The case of a two-dimensional rigid polyg
onal body moving amidst polygonal barriers,"
Comm. on Pure and Applied Math., vol. 34, pp. 345
398, 1983.

or

a contradiction. Hence 02,A > B2,B.

REFERENCES

[1] M. S. Branicky and W. S. Newman, "Rapid computa
tion of configuration space obstacles," in Proc. IEEE
Int. Con! Robotics Automat., Cincinnati, OH, May
13-18, 1990, pp. 304-310.

[2] J. J. Fox, "Path planning for articulated manipula
tors," Ph.D. Dissertation, Dept. of Elect. Eng., Pur
due Univ., forthcoming.

[3] Y. Hwang and N. Ahuja, "Gross motion planning-A
survey," to appear in ACM Computing Surveys.

[4] T. Lozano-Perez, "Automatic planning of manipula
tor transfer movements," IEEE Trans. Syst., Man,
Cybern., vol. SMC-ll, no. 10, pp. 681-698, Oct.
1981.

or

Also,

Lemma 2: If B2,A and 02,B are in the open intervals
[-11', -~] or [~, 11'] and J(A > KB then 02,A < 02,B

Proof:

Similar to the proof of Lemma 1.

Analogous lemmas exist for obstacles at a radius R < II,
however the proofs are slightly different.

Details regarding the determination of the O2 interval
in which a particular intersection takes place and the al
gorithm which results as an application of Lemmas 1 and
2 may be found in [2].

C. Timing Results

The algorithm described above has been run on nu
merous examples. The time required to process an en
vironment with 20 point obstacles took 21.5 msec. on a
SPARC-IPC workstation containing a 15.7 MIPS RISC
architecture. Of this time, 10.89 msec was required for
preprocessing and 9.6 msec was required to actually cal
culate the connectivity graph.

V. CONCLUSIONS

In this paper, an efficient algorithm for generating
the connectivity graph for a class of articulated manipu
lators has been introduced. The structure of the code is
that of a sweep line algorithm and pseudo code has been
provided to illustrate the mechanisms required for han
dling the key events. The efficiency of the algorithm rests
in a test for determining the existence of an intersection
between distinct configuration space obstacles without re
quiring the exhaustive calculation of the curve describing
this obstacle, as has previously been the case. A specific
example has been discussed to illustrate the operation of
the algorithm, and complexity results have been provided.

Lemma 1: If ()2 A and ()2 B are in the closed interval
[-~,~] and J(A .; J(B then'()2,A > B2,B

Proof: By contradiction.
Assume J(A > J(B but ()2,A < B2,B. In [5], it was

shown that the slope of a configuration space obstacle is
given by

This appendix gives a procedure for sorting the points
of intersection of two obstacles based upon the intercept
value of the line describing where the intersection must
take place. Let 01 + O2 = I<A and 01 + O2 = J(B be
lines which intersect a configuration space obstacle repre
senting a point at a radius R > 11 . Let (B1,A ,fh ,A) and
(th,B, B2,B) denote the intersection points of these lines
with the obstacle. We have the following lemma.

d()2 12 + 11 cos ()2
so, = -1

2
(A.l)

It is apparent that for ()2 € [- ~, ~], ~ ::; -1. Since the
function describing the obstacle is continuous and, as a
consequence of the Mean Value Theorem of calculus, the
chord between (Bl,A, ()2,A) and (()l,B, ()2,B) must have a
slope m < -1, that is,

36

