12 research outputs found

    Intestinal Fatty Acid Binding Protein (I-FABP) as a Prognostic Marker in Critically Ill COVID-19 Patients

    No full text
    Gastrointestinal symptoms are common in critically ill COVID-19 patients. There is currently no generally recognized method of assessing gastrointestinal injury in unconscious or sedated intensive care unit (ICU) patients. I-FABP (intestinal fatty acid binding protein) and citrulline have previously been studied as potential biomarkers of enterocyte damage in various gastrointestinal tract diseases, and changes in the levels of these markers may reflect intestinal wall damage in COVID-19. Patients with critical COVID-19, with diagnosed sepsis, or septic shock requiring ICU treatment were included in the study. Blood samples for citrulline and I-FABP were taken daily from day 1 to 5. I-FABP levels were significantly higher in patients who eventually died from COVID-19 than in survivors, and the optimal I-FABP cut-off point for predicting 28-day mortality was 668.57 pg/mL (sensitivity 0.739, specificity 0.765). Plasma levels of I-FABP, but not citrulline, were associated with significantly higher mortality and appeared to be a predictor of poor outcome in multivariate logistic regression analysis. In conclusion, I-FABP seems to be an effective prognostic marker in critically ill COVID-19 patients. Assessing mortality risk based on intestinal markers may be helpful in making clinical decisions regarding the management of intestinal injury, imaging diagnostics, and potential surgical interventions

    Solfatara – nine days of fisherman’s revolution. Ewa Tyszko talks to Maciej Hen

    Get PDF
    Interviewed by Ewa Tyszko, Maciej Hen talks about the creation of his chronicle novel – Solfatara, which is set in 17th century Naples.W rozmowie z Ewą Tyszko Maciej Hen opowiada o powstawaniu powieści-kroniki Solfatara, której akcja rozgrywa się w siedemnastowiecznym Neapolu.Publikacja dofinansowana przez katedry literaturoznawcze Instytutu Filologii Polskiej U

    Environmental protection instruments in Polish agriculture in the context of its sustainable development

    No full text
    The study reviews and assesses functioning of subsidized crop and livestock insurance as regards the level of their use and determination of factors motivating and demotivating to conclude insurance contracts by farmers. Chapters: Key concepts related to sustainable development. Instruments of environmental protection in agriculture. Assessment of selected instruments for environmental protection in the context of its sustainable development

    Methylation Status of Gene Bodies of Selected microRNA Genes Associated with Neoplastic Transformation in Equine Sarcoids

    No full text
    Horses are of great importance in recreation, livestock production, as working animals in poorly developed countries, and for equine-assisted therapy. Equine sarcoids belong to the most commonly diagnosed tumors in this species. They may cause discomfort, pain, and can lead to the permanent impairment of motor function. The molecular bases of their formation are still under investigation. Our previous studies revealed altered microRNA (miRNA) expression and DNA methylation levels in sarcoid tumors. Abnormal patterns of methylation may be responsible for changes in gene expression levels, including microRNAs. Recently, the DNA methylation of gene bodies has also been shown to have an impact on gene expression. Thus, the aim of the study was to investigate the methylation pattern of gene bodies of chosen miRNAs identified in sarcoid tissue (miR-101, miR-10b, miR-200a, and miR-338-3p), which have also been established to play roles in neoplastic transformation. To this end, we applied qRT-PCR, Bisulfite Sequencing PCR (BSP), and Mquant methods. As a result, we identified the statistically significant downregulation of pri-mir-101-1, pri-mir-10b, and pri-mir-200a in the sarcoid samples in comparison to the control. The DNA methylation analysis revealed their hypermethylation. This suggests that DNA methylation may be one mechanism responsible for the downregulation of theses miRNAs. However, the identified differences in the methylation levels are not very high, which implies that other mechanisms may also underlie the downregulation of the expression of these miRNAs in equine sarcoids. For the first time, the results obtained shed light on microRNA expression regulation by gene body methylation in equine sarcoids and provide bases for further deeper studies on other mechanisms influencing the miRNA repertoire

    Fibronectin as a Marker of Disease Severity in Critically Ill COVID-19 Patients

    No full text
    The SARS-CoV-2 virus alters the expression of genes for extracellular matrix proteins, including fibronectin. The aim of the study was to establish the relationship between different forms of fibronectin, such as plasma (pFN), cellular (EDA-FN), and proteolytic FN-fragments, and disease severity and mortality of critically ill patients treated in the intensive care unit. The levels of pFN, EDA-FN, and FN-fragments were measured in patients with a viral (N = 43, COVID-19) or bacterial (N = 41, sepsis) infection, using immunoblotting and ELISA. The level of EDA-FN, but not pFN, was related to the treatment outcome and was significantly higher in COVID-19 Non-survivors than in Survivors. Furthermore, EDA-FN levels correlated with APACHE II and SOFA scores. FN-fragments were detected in 95% of COVID-19 samples and the amount was significantly higher in Non-survivors than in Survivors. Interestingly, FN-fragments were present in only 56% of samples from patients with bacterial sepsis, with no significant differences between Non-survivors and Survivors. The new knowledge gained from our research will help to understand the differences in immune response depending on the etiology of the infection. Fibronectin is a potential biomarker that can be used in clinical settings to monitor the condition of COVID-19 patients and predict treatment outcomes

    Citrulline, Intestinal Fatty Acid-Binding Protein and the Acute Gastrointestinal Injury Score as Predictors of Gastrointestinal Failure in Patients with Sepsis and Septic Shock

    No full text
    Gastrointestinal (GI) failure can be both a cause of sepsis and a consequence of the systemic pro-inflammatory response in sepsis. Changes in biomarkers of enterocyte damage, citrulline and I-FABP (intestinal fatty acid binding protein), may indicate altered intestinal permeability and damage. The study group consisted of patients with sepsis (N = 28) and septic shock (N = 30); the control group included patients without infection (N = 10). Blood samples were collected for citrulline and I-FABP and a 4-point AGI score (acute GI injury score) was calculated to monitor GI function on days 1, 3, 5, 7, and 10. Citrulline concentrations in the study group were lower than in the control. Lower values were also noted in septic patients with shock when compared to the non-shock group throughout the study period. I-FABP was higher in the septic shock group than in the sepsis group only on days 1 and 3. Citrulline was lower in patients with GI failure (AGI III) when compared to AGI I/II, reaching significance on days 7 (p = 0.034) and 10 (p = 0.015); moreover, a higher AGI score was associated with an increased 28 day mortality (p = 0.038). The results indicate that citrulline measurements, along with the AGI assessment, have clinical potential in monitoring GI function and integrity in sepsis

    Explainable Artificial Intelligence Helps in Understanding the Effect of Fibronectin on Survival of Sepsis

    No full text
    Fibronectin (FN) plays an essential role in the host’s response to infection. In previous studies, a significant decrease in the FN level was observed in sepsis; however, it has not been clearly elucidated how this parameter affects the patient’s survival. To better understand the relationship between FN and survival, we utilized innovative approaches from the field of explainable machine learning, including local explanations (Break Down, Shapley Additive Values, Ceteris Paribus), to understand the contribution of FN to predicting individual patient survival. The methodology provides new opportunities to personalize informative predictions for patients. The results showed that the most important indicators for predicting survival in sepsis were INR, FN, age, and the APACHE II score. ROC curve analysis showed that the model’s successful classification rate was 0.92, its sensitivity was 0.92, its positive predictive value was 0.76, and its accuracy was 0.79. To illustrate these possibilities, we have developed and shared a web-based risk calculator for exploring individual patient risk. The web application can be continuously updated with new data in order to further improve the model

    Tracking the Molecular Scenarios for Tumorigenic Remodeling of Extracellular Matrix Based on Gene Expression Profiling in Equine Skin Neoplasia Models

    No full text
    An important component of tissues is the extracellular matrix (ECM), which not only forms a tissue scaffold, but also provides the environment for numerous biochemical reactions. Its composition is strictly regulated, and any irregularities can result in the development of many diseases, including cancer. Sarcoid is the most common skin cancer in equids. Its formation results from the presence of the genetic material of the bovine papillomavirus (BPV). In addition, it is assumed that sarcoid-dependent oncogenic transformation arises from a disturbed wound healing process, which may be due to the incorrect functioning of the ECM. Moreover, sarcoid is characterized by a failure to metastasize. Therefore, in this study we decided to investigate the differences in the expression profiles of genes related not only to ECM remodeling, but also to the cell adhesion pathway, in order to estimate the influence of disturbances within the ECM on the sarcoid formation process. Furthermore, we conducted comparative research not only between equine sarcoid tissue bioptates and healthy skin-derived explants, but also between dermal fibroblast cell lines transfected and non-transfected with a construct encoding the E4 protein of the BP virus, in order to determine its effect on ECM disorders. The obtained results strongly support the hypothesis that ECM-related genes are correlated with sarcoid formation. The deregulated expression of selected genes was shown in both equine sarcoid tissue bioptates and adult cutaneous fibroblast cell (ACFC) lines neoplastically transformed by nucleofection with gene constructs encoding BPV1-E1^E4 protein. The identified genes (CD99, ITGB1, JAM3 and CADM1) were up- or down-regulated, which pinpointed the phenotypic differences from the backgrounds noticed for adequate expression profiles in other cancerous or noncancerous tumors as reported in the available literature data. Unravelling the molecular pathways of ECM remodeling and cell adhesion in the in vivo and ex vivo models of epidermal/dermal sarcoid-related cancerogenesis might provide powerful tools for further investigations of genetic and epigenetic biomarkers for both silencing and re-initiating the processes of sarcoid-dependent neoplasia. Recognizing those biomarkers might insightfully explain the relatively high capacity of sarcoid-descended cancerous cell derivatives to epigenomically reprogram their nonmalignant neoplastic status in domestic horse cloned embryos produced by somatic cell nuclear transfer (SCNT)

    Assessment of BPV-1 Mediated Matrix Metalloproteinase Genes Deregulation in the In Vivo and In Vitro Models Designed to Explore Molecular Nature of Equine Sarcoids

    No full text
    Matrix metalloproteinases (MMPs) represent a family of enzymes capable of biocatalytically breaking down the structural and functional proteins responsible for extracellular matrix (ECM) integrity. This capability is widely used in physiological processes; however, imbalanced MMP activity can trigger the onset and progression of various pathological changes, including the neoplasmic transformation of different cell types. We sought to uncover molecular mechanisms underlying alterations in transcriptional profiles of genes coding for MMPs, which were comprehensively identified in equine adult dermal tissue bioptates, sarcoid-derived explants, and ex vivo expanded adult cutaneous fibroblast cell (ACFC) lines subjected to inducible oncogenic transformation into sarcoid-like cells. The results strongly support the hypothesis that the transcriptional activity of MMP genes correlates with molecular modifications arising in equine dermal cells during their conversion into sarcoid cells. The alterations in MMP transcription signatures occurs in both sarcoid tissues and experimentally transformed equine ACFC lines expressing BPV1-E4^E1 transgene, which were characterized by gene up- and down-regulation patterns
    corecore