122 research outputs found

    Diet, Metabolites, and “Western-Lifestyle” Inflammatory Diseases

    Get PDF
    One explanation for the increased incidence of allergies, asthma, and even some autoimmune diseases has been the hygiene hypothesis. However, recent studies also highlight an important role for diet and bacterial metabolites in controlling various immune pathways, including gut and immune homeostasis, regulatory T cell biology, and inflammation. Dietary-related metabolites engage “metabolite-sensing” G-protein-coupled receptors, such as GPR43, GPR41, GPR109A, GPR120, and GPR35. These receptors are expressed on immune cells and some gut epithelial cells and generally mediate a direct anti-inflammatory effect. Insufficient intake of “healthy foodstuffs” adversely affects the production of bacterial metabolites. These metabolites and those derived directly from food drive beneficial downstream effects on immune pathways. We propose that insufficient exposure to dietary and bacterial metabolites might underlie the development of inflammatory disorders in Western countries. This review highlights what is currently known about diet, metabolites, and their associated immune pathways in relation to the development of inflammatory disease

    Interleukin-7, a New Cytokine Targeting the Mouse Hypothalamic Arcuate Nucleus: Role in Body Weight and Food Intake Regulation

    Get PDF
    Body weight is controlled through peripheral (white adipose tissue) and central (mainly hypothalamus) mechanisms. We have recently obtained evidence that overexpression of interleukin (IL)-7, a critical cytokine involved in lymphopoiesis, can protect against the development of diet-induced obesity in mice. Here we assessed whether IL-7 mediated its effects by modulating hypothalamic function. Acute subcutaneous injection of IL-7 prevented monosodium glutamate-induced obesity, this being correlated with partial protection against cell death in the hypothalamic arcuate nucleus (ARC). Moreover, we showed that IL-7 activated hypothalamic areas involved in regulation of feeding behavior, as indicated by induction of the activation marker c-Fos in neural cells located in the ventromedial part of the ARC and by inhibition of food intake after fasting. Both chains of the IL-7 receptor (IL-7Rα and γc) were expressed in the ARC and IL-7 injection induced STAT-3 phosphorylation in this area. Finally, we established that IL-7 modulated the expression of neuropeptides that tune food intake, with a stimulatory effect on the expression of pro-opiomelanocortin and an inhibitory effect on agouti-related peptide expression in accordance with IL-7 promoting anorectic effects. These results suggest that the immunomodulatory cytokine IL-7 plays an important and unappreciated role in hypothalamic body weight regulation

    Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways

    Get PDF
    The incidence of food allergies in western countries has increased dramatically in recent decades. Tolerance to food antigens relies on mucosal CD103+ dendritic cells (DCs), which promote differentiation of regulatory T (Treg) cells. We show that high-fiber feeding in mice improved oral tolerance and protected from food allergy. High-fiber feeding reshaped gut microbial ecology and increased the release of short-chain fatty acids (SCFAs), particularly acetate and butyrate. High-fiber feeding enhanced oral tolerance and protected against food allergy by enhancing retinal dehydrogenase activity in CD103+ DC. This protection depended on vitamin A in the diet. This feeding regimen also boosted IgA production and enhanced T follicular helper and mucosal germinal center responses. Mice lacking GPR43 or GPR109A, receptors for SCFAs, showed exacerbated food allergy and fewer CD103+ DCs. Dietary elements, including fiber and vitamin A, therefore regulate numerous protective pathways in the gastrointestinal tract, necessary for immune non-responsiveness to food antigens

    Impact of the Food Additive Titanium Dioxide (E171) on Gut Microbiota-Host Interaction

    Get PDF
    The interaction between gut microbiota and host plays a central role in health. Dysbiosis, detrimental changes in gut microbiota and inflammation have been reported in non-communicable diseases. While diet has a profound impact on gut microbiota composition and function, the role of food additives such as titanium dioxide (TiO2), prevalent in processed food, is less established. In this project, we investigated the impact of food grade TiO2 on gut microbiota of mice when orally administered via drinking water. While TiO2 had minimal impact on the composition of the microbiota in the small intestine and colon, we found that TiO2 treatment could alter the release of bacterial metabolites in vivo and affect the spatial distribution of commensal bacteria in vitro by promoting biofilm formation. We also found reduced expression of the colonic mucin 2 gene, a key component of the intestinal mucus layer, and increased expression of the beta defensin gene, indicating that TiO2 significantly impacts gut homeostasis. These changes were associated with colonic inflammation, as shown by decreased crypt length, infiltration of CD8+ T cells, increased macrophages as well as increased expression of inflammatory cytokines. These findings collectively show that TiO2 is not inert, but rather impairs gut homeostasis which may in turn prime the host for disease development

    Interleukin-7 Regulates Adipose Tissue Mass and Insulin Sensitivity in High-Fat Diet-Fed Mice through Lymphocyte-Dependent and Independent Mechanisms

    Get PDF
    Although interleukin (IL)-7 is mostly known as a key regulator of lymphocyte homeostasis, we recently demonstrated that it also contributes to body weight regulation through a hypothalamic control. Previous studies have shown that IL-7 is produced by the human obese white adipose tissue (WAT) yet its potential role on WAT development and function in obesity remains unknown. Here, we first show that transgenic mice overexpressing IL-7 have reduced adipose tissue mass associated with glucose and insulin resistance. Moreover, in the high-fat diet (HFD)-induced obesity model, a single administration of IL-7 to C57BL/6 mice is sufficient to prevent HFD-induced WAT mass increase and glucose intolerance. This metabolic protective effect is accompanied by a significant decreased inflammation in WAT. In lymphocyte-deficient HFD-fed SCID mice, IL-7 injection still protects from WAT mass gain. However, IL-7-triggered resistance against WAT inflammation and glucose intolerance is lost in SCID mice. These results suggest that IL-7 regulates adipose tissue mass through a lymphocyte-independent mechanism while its protective role on glucose homeostasis would be relayed by immune cells that participate to WAT inflammation. Our observations establish a key role for IL-7 in the complex mechanisms by which immune mediators modulate metabolic functions

    Macrophage Inhibitory Cytokine 1 (MIC-1/GDF15) Decreases Food Intake, Body Weight and Improves Glucose Tolerance in Mice on Normal & Obesogenic Diets

    Get PDF
    Food intake and body weight are controlled by a variety of central and peripheral factors, but the exact mechanisms behind these processes are still not fully understood. Here we show that that macrophage inhibitory cytokine-1 (MIC-1/GDF15), known to have anorexigenic effects particularly in cancer, provides protection against the development of obesity. Both under a normal chow diet and an obesogenic diet, the transgenic overexpression of MIC-1/GDF15 in mice leads to decreased body weight and fat mass. This lean phenotype was associated with decreased spontaneous but not fasting-induced food intake, on a background of unaltered energy expenditure and reduced physical activity. Importantly, the overexpression of MIC-1/GDF15 improved glucose tolerance, both under normal and high fat-fed conditions. Altogether, this work shows that the molecule MIC-1/GDF15 might be beneficial for the treatment of obesity as well as perturbations in glucose homeostasis

    Y1 and Y5 Receptors Are Both Required for the Regulation of Food Intake and Energy Homeostasis in Mice

    Get PDF
    Neuropeptide Y (NPY) acting in the hypothalamus is one of the most powerful orexigenic agents known. Of the five known Y receptors, hypothalamic Y1 and Y5 have been most strongly implicated in mediating hyperphagic effects. However, knockout of individual Y1 or Y5 receptors induces late-onset obesity – and Y5 receptor knockout also induces hyperphagia, possibly due to redundancy in functions of these genes. Here we show that food intake in mice requires the combined actions of both Y1 and Y5 receptors. Germline Y1Y5 ablation in Y1Y5−/− mice results in hypophagia, an effect that is at least partially mediated by the hypothalamus, since mice with adult-onset Y1Y5 receptor dual ablation targeted to the paraventricular nucleus (PVN) of the hypothalamus (Y1Y5Hyp/Hyp) also exhibit reduced spontaneous or fasting-induced food intake when fed a high fat diet. Interestingly, despite hypophagia, mice with germline or hypothalamus-specific Y1Y5 deficiency exhibited increased body weight and/or increased adiposity, possibly due to compensatory responses to gene deletion, such as the decreased energy expenditure observed in male Y1Y5−/− animals relative to wildtype values. While Y1 and Y5 receptors expressed in other hypothalamic areas besides the PVN – such as the dorsomedial nucleus and the ventromedial hypothalamus – cannot be excluded from having a role in the regulation of food intake, these studies demonstrate the pivotal, combined role of both Y1 and Y5 receptors in the mediation of food intake
    corecore