13 research outputs found

    Streamlining the Change-Over Protocol for the RPA Mission Intelligence Coordinator by way of Situation Awareness Oriented Design and Discrete Event Simulation

    Get PDF
    Incredible loiter times coupled with the ability to make extremely detailed collections at significant stand-off distances with a relatively expendable platform has made demand for, and diversity of, Remotely Piloted Aircraft (RPA) operations grow at voracious rates. Conversely, financial resources are becoming increasingly constrained. As such, innovators are looking to maximize the effectiveness of existing personnel and assets by considering concepts such as simultaneous Multiple Aircraft Control (MAC) by a single aircrew. Research has identified procedural inefficiencies in current operations as well as substantial impediments to MAC implementation, including dynamic task saturation and communication challenges. An identified inefficiency afflicting both current operations and the feasibility of MAC is the time required to transfer operational situation awareness at shift change -- dubbed change-over. The present research employed synergistic application of Cognitive Task Analyses, Situation Awareness Oriented Design, and Monte Carlo simulation to inform the development of a highly efficient user-centered process for the Mission Intelligence Coordinator -- the RPA aircrew\u27s situation awareness linchpin. Discrete-event simulations were performed on existing and proposed protocols. These analyses indicate that the proposed protocol could require as little as one-third the time required by the current method. It is proposed that such an improvement could significantly increase current RPA mission-readiness as well as diminish a known obstacle to MAC implementation

    Allocation of Communications to Reduce Mental Workload

    Get PDF
    As the United States Department of Defense continues to increase the number of Remotely Piloted Aircraft (RPA) operations overseas, improved Human Systems Integration becomes increasingly important. Manpower limitations have motivated the investigation of Multiple Aircraft Control (MAC) configurations where a single pilot controls multiple RPAs simultaneously. Previous research has indicated that frequent, unpredictable, and oftentimes overwhelming, volumes of communication events can produce unmanageable levels of system induced workload for MAC pilots. Existing human computer interface design includes both visual information with typed responses, which conflict with numerous other visual tasks the pilot performs, and auditory information that is provided through multiple audio devices with speech response. This paper extends previous discrete event workload models of pilot activities flying multiple aircraft. Specifically, we examine statically reallocating communication modality with the goal to reduce and minimize the overall pilot cognitive workload. The analysis investigates the impact of various communication reallocations on predicted pilot workload, measured by the percent of time workload is over a saturation threshold

    Expansion of phenotype and genotypic data in CRB2-related syndrome

    No full text
    Sequence variants in CRB2 cause a syndrome with greatly elevated maternal serum alpha-fetoprotein and amniotic fluid alpha-fetoprotein levels, cerebral ventriculomegaly and renal findings similar to Finnish congenital nephrosis. All reported patients have been homozygotes or compound heterozygotes for sequence variants in the Crumbs, Drosophila, Homolog of, 2 (CRB2) genes. Variants affecting CRB2 function have also been identified in four families with steroid resistant nephrotic syndrome, but without any other known systemic findings. We ascertained five, previously unreported individuals with biallelic variants in CRB2 that were predicted to affect function. We compiled the clinical features of reported cases and reviewed available literature for cases with features suggestive of CRB2-related syndrome in order to better understand the phenotypic and genotypic manifestations. Phenotypic analyses showed that ventriculomegaly was a common clinical manifestation (9/11 confirmed cases), in contrast to the original reports, in which patients were ascertained due to renal disease. Two children had minor eye findings and one was diagnosed with a B-cell lymphoma. Further genetic analysis identified one family with two affected siblings who were both heterozygous for a variant in NPHS2 predicted to affect function and separate families with sequence variants in NPHS4 and BBS7 in addition to the CRB2 variants. Our report expands the clinical phenotype of CRB2-related syndrome and establishes ventriculomegaly and hydrocephalus as frequent manifestations. We found additional sequence variants in genes involved in kidney development and ciliopathies in patients with CRB2-related syndrome, suggesting that these variants may modify the phenotype

    Adenine Nucleotide (ADP/ATP) Translocase 3 Participates in the Tumor Necrosis Factor–induced Apoptosis of MCF-7 Cells

    Get PDF
    Mitochondrial adenine nucleotide translocase (ANT) is believed to be a component or a regulatory component of the mitochondrial permeability transition pore (mtPTP), which controls mitochondrial permeability transition during apoptosis. However, the role of ANT in apoptosis is still uncertain, because hepatocytes isolated from ANT knockout and wild-type mice are equally sensitive to TNF- and Fas-induced apoptosis. In a screen for genes required for tumor necrosis factor α (TNF-α)-induced apoptosis in MCF-7 human breast cancer cells using retrovirus insertion–mediated random mutagenesis, we discovered that the ANT3 gene is involved in TNF-α–induced cell death in MCF-7 cells. We further found that ANT3 is selectively required for TNF- and oxidative stress–induced cell death in MCF-7 cells, but it is dispensable for cell death induced by several other inducers. This data supplements previous data obtained from ANT knockout studies, indicating that ANT is involved in some apoptotic processes. We found that the resistance to TNF-α–induced apoptosis observed in ANT3 mutant (ANT3mut) cells is associated with a deficiency in the regulation of the mitochondrial membrane potential and cytochrome c release. It is not related to intracellular ATP levels or survival pathways, supporting a previous model in which ANT regulates mtPTP. Our study provides genetic evidence supporting a role of ANT in apoptosis and suggests that the involvement of ANT in cell death is cell type– and stimulus-dependent

    The promise of organ and tissue preservation to transform medicine

    No full text
    The ability to replace organs and tissues on demand could save or improve millions of lives each year globally and create public health benefits on par with curing cancer. Unmet needs for organ and tissue preservation place enormous logistical limitations on transplantation, regenerative medicine, drug discovery, and a variety of rapidly advancing areas spanning biomedicine. A growing coalition of researchers, clinicians, advocacy organizations, academic institutions, and other stakeholders has assembled to address the unmet need for preservation advances, outlining remaining challenges and identifying areas of underinvestment and untapped opportunities. Meanwhile, recent discoveries provide proofs of principle for breakthroughs in a family of research areas surrounding biopreservation. These developments indicate that a new paradigm, integrating multiple existing preservation approaches and new technologies that have flourished in the past 10 years, could transform preservation research. Capitalizing on these opportunities will require engagement across many research areas and stakeholder groups. A coordinated effort is needed to expedite preservation advances that can transform several areas of medicine and medical science
    corecore