790 research outputs found

    Low-momentum interactions with Brown-Rho-Ericson scalings and the density dependence of the nuclear symmetry energy

    Full text link
    We have calculated the nuclear symmetry energy Esym(ρ)E_{sym}(\rho) up to densities of 45ρ04 \sim 5 \rho_0 with the effects from the Brown-Rho (BR) and Ericson scalings for the in-medium mesons included. Using the VlowkV_{low-k} low-momentum interaction with and without such scalings, the equations of state (EOS) of symmetric and asymmetric nuclear matter have been calculated using a ring-diagarm formalism where the particle-particle-hole-hole ring diagrams are included to all orders. The EOS for symmetric nuclear matter and neutron matter obtained with linear BR scaling are both overly stiff compared with the empirical constraints of Danielewicz {\it et al.} \cite{daniel02}. In contrast, satisfactory results are obtained by either using the nonlinear Ericson scaling or by adding a Skyrme-type three-nucleon force (TNF) to the unscaled VlowkV_{low-k} interaction. Our results for Esym(ρ)E_{sym}(\rho) obtained with the nonlinear Ericson scaling are in good agreement with the empirical values of Tsang {\it et al.} \cite{tsang09} and Li {\it et al.} \cite{li05}, while those with TNF are slightly below these values. For densities below the nuclear saturation density ρ0\rho_0, the results of the above calculations are nearly equivalent to each other and all in satisfactory agreement with the empirical values.Comment: 7 pages, 6 figure

    More on nucleon-nucleon cross sections in symmetric and asymmetric matter

    Full text link
    Following a recent work, we present numerical results for total two-nucleon effective cross sections in isospin symmetric and asymmetric matter. The present calculations include the additional effect of Pauli blocking of the final states.Comment: 9 pages, no figures, 5 table

    Epoxysuccinyl peptide-derived cathepsin B inhibitors: Modulating membrane permeability by conjugation with the C-terminal heptapeptide segment of penetratin

    Get PDF
    Besides its physiological role in lysosomal protein breakdown, extralysosomal cathepsin B has recently been implicated in apoptotic cell death. Highly specific irreversible cathepsin B inhibitors that are readily cellpermeant should be useful tools to elucidate the effects of cathepsin B in the cytosol. We have covalently functionalised the poorly cellpermeant epoxysuccinyl based cathepsin B inhibitor [RGlyGlyLeu(2S, 3S)tEpsLeuProOH; R=OMe] with the C-terminal heptapeptide segment of penetratin (R=εAhxArg ArgNleLysTrpLysLysNH(2)). The high inhibitory potency and selectivity for cathepsin B versus cathepsin L of the parent compound was not affected by the conjugation with the penetratin heptapeptide. The conjugate was shown to efficiently penetrate into MCF-7 cells as an active inhibitor, thereby circumventing an intracellular activation step that is required by other inhibitors, such as the prodruglike epoxysuccinyl peptides E64d and CA074Me

    The relativistic self-energy in nuclear dynamics

    Get PDF
    It is a well known fact that Dirac phenomenology of nuclear forces predicts the existence of large scalar and vector mean fields in matter. To analyse the relativistic self-energy in a model independent way, modern high precision nucleon-nucleon (NNNN) potentials are mapped on a relativistic operator basis using projection techniques. This allows to compare the various potentials at the level of covariant amplitudes were a remarkable agreement is found. It allows further to calculate the relativistic self-energy in nuclear matter in Hartree-Fock approximation. Independent of the choice of the nucleon-nucleon interaction large scalar and vector mean fields of several hundred MeV magnitude are generated at tree level. In the framework of chiral EFT these fields are dominantly generated by contact terms which occur at next-to-leading order in the chiral expansion. Consistent with Dirac phenomenology the corresponding low energy constants which generate the large fields are closely connected to the spin-orbit interaction in NNNN scattering. The connection to QCD sum rules is discussed as well.Comment: 49 pages, 13 figure

    Accurate Charge-Dependent Nucleon-Nucleon Potential at Fourth Order of Chiral Perturbation Theory

    Full text link
    We present the first nucleon-nucleon potential at next-to-next-to-next-to-leading order (fourth order) of chiral perturbation theory. Charge-dependence is included up to next-to-leading order of the isospin-violation scheme. The accuracy for the reproduction of the NN data below 290 MeV lab. energy is comparable to the one of phenomenological high-precision potentials. Since NN potentials of order three and less are known to be deficient in quantitative terms, the present work shows that the fourth order is necessary and sufficient for a reliable NN potential derived from chiral effective Lagrangians. The new potential provides a promising starting point for exact few-body calculations and microscopic nuclear structure theory (including chiral many-body forces derived on the same footing).Comment: 4 pages Revtex including one figur

    Predicting the single-proton/neutron potentials in asymmetric nuclear matter

    Full text link
    We discuss the one-body potentials for protons and neutrons obtained from Dirac-Brueckner-Hartree-Fock calculations of neutron-rich matter, in particular their dependence upon the degree of proton/neutron asymmetry. The closely related symmetry potential is compared with empirical information from the isovector component of the nuclear optical potential.Comment: 9 pages, 6 figures. Minor revisions, added comments, reference

    Nuclear forces from chiral EFT: The unfinished business

    Full text link
    In spite of the great progress we have seen in recent years in the derivation of nuclear forces from chiral effective field theory (EFT), some important issues are still unresolved. In this contribution, we discuss the open problems which have particular relevance for microscopic nuclear structure, namely, the proper renormalization of chiral nuclear potentials and sub-leading many-body forces.Comment: 16 pages, 3 figures; contribution to J. Phys. G, Special Issue, Focus Section: Open Problems in Nuclear Structur

    Recent advances in the theory of nuclear forces

    Get PDF
    After a brief historical review, we present recent progress in our understanding of nuclear forces in terms of chiral effective field theory.Comment: 6 pages, 2 figures; talk at International Symposium on Correlations Dynamics in Nuclei, University of Tokyo, Japan, 31 January-4 February, 200

    Neutron star, β\beta-stable ring-diagram equation of state and Brown-Rho scaling

    Full text link
    Neutron star properties, such as its mass, radius, and moment of inertia, are calculated by solving the Tolman-Oppenheimer-Volkov (TOV) equations using the ring-diagram equation of state (EOS) obtained from realistic low-momentum NN interactions VlowkV_{low-k}. Several NN potentials (CDBonn, Nijmegen, Argonne V18 and BonnA) have been employed to calculate the ring-diagram EOS where the particle-particle hole-hole ring diagrams are summed to all orders. The proton fractions for different radial regions of a β\beta-stable neutron star are determined from the chemical potential conditions μnμp=μe=μμ\mu_n-\mu_p = \mu_e = \mu_\mu. The neutron star masses, radii and moments of inertia given by the above potentials all tend to be too small compared with the accepted values. Our results are largely improved with the inclusion of medium corrections based on Brown-Rho scaling where the in-medium meson masses, particularly those of ω\omega, ρ\rho and σ\sigma, are slightly decreased compared with their in-vacuum values. Representative results using such medium corrected interactions are neutron star mass M1.8MM\sim 1.8 M_{\odot}, radius R9R\sim 9 km and moment of inertia 60Mkm2\sim 60 M_{\odot}km^2. The mass-radius trajectories given by the above four realistic NN potentials are by and large overlapping.Comment: 12.7 pages, 13 figures, 3 table
    corecore