4 research outputs found

    HSPVdb—the Human Short Peptide Variation Database for improved mass spectrometry-based detection of polymorphic HLA-ligands

    Get PDF
    T cell epitopes derived from polymorphic proteins or from proteins encoded by alternative reading frames (ARFs) play an important role in (tumor) immunology. Identification of these peptides is successfully performed with mass spectrometry. In a mass spectrometry-based approach, the recorded tandem mass spectra are matched against hypothetical spectra generated from known protein sequence databases. Commonly used protein databases contain a minimal level of redundancy, and thus, are not suitable data sources for searching polymorphic T cell epitopes, either in normal or ARFs. At the same time, however, these databases contain much non-polymorphic sequence information, thereby complicating the matching of recorded and theoretical spectra, and increasing the potential for finding false positives. Therefore, we created a database with peptides from ARFs and peptide variation arising from single nucleotide polymorphisms (SNPs). It is based on the human mRNA sequences from the well-annotated reference sequence (RefSeq) database and associated variation information derived from the Single Nucleotide Polymorphism Database (dbSNP). In this process, we removed all non-polymorphic information. Investigation of the frequency of SNPs in the dbSNP revealed that many SNPs are non-polymorphic “SNPs”. Therefore, we removed those from our dedicated database, and this resulted in a comprehensive high quality database, which we coined the Human Short Peptide Variation Database (HSPVdb). The value of our HSPVdb is shown by identification of the majority of published polymorphic SNP- and/or ARF-derived epitopes from a mass spectrometry-based proteomics workflow, and by a large variety of polymorphic peptides identified as potential T cell epitopes in the HLA-ligandome presented by the Epstein–Barr virus cells

    Sex differences in COVID-19 mortality risk in patients on kidney function replacement therapy

    No full text
    In the general population with COVID-19, the male sex is an established risk factor for mortality, in part due to a more robust immune response to COVID-19 in women. Because patients on kidney function replacement therapy (KFRT) have an impaired immune response, especially kidney transplant recipients due to their use of immunosuppressants, we examined whether the male sex is still a risk factor for mortality among patients on KFRT with COVID-19. From the European Renal Association COVID-19 Database (ERACODA), we examined patients on KFRT with COVID-19 who presented between February 1st, 2020, and April 30th, 2021. 1204 kidney transplant recipients (male 62.0%, mean age 56.4 years) and 3206 dialysis patients (male 61.8%, mean age 67.7 years) were examined. Three-month mortality in kidney transplant recipients was 16.9% in males and 18.6% in females (p = 0.31) and in dialysis patients 27.1% in males and 21.9% in females (p = 0.001). The adjusted HR for the risk of 3-month mortality in males (vs females) was 0.89 (95% CI 65, 1.23, p = 0.49) in kidney transplant recipients and 1.33 (95% CI 1.13, 1.56, p = 0.001) in dialysis patients (pinteraction = 0.02). In a fully adjusted model, the aHR for the risk of 3-month mortality in kidney transplant recipients (vs. dialysis patients) was 1.39 (95% CI 1.02, 1.89, p = 0.04) in males and 2.04 (95% CI 1.40, 2.97, p < 0.001) in females (pinteraction = 0.02). In patients on KFRT with COVID-19, the male sex is not a risk factor for mortality among kidney transplant recipients but remains a risk factor among dialysis patients. The use of immunosuppressants in kidney transplant recipients, among other factors, may have narrowed the difference in the immune response to COVID-19 between men and women, and therefore reduced the sex difference in COVID-19 mortality risk
    corecore