4,449 research outputs found
Direct Imaging of Spatially Modulated Superfluid Phases in Atomic Fermion Systems
It is proposed that the spatially modulated superfluid phase, or the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state could be observed in resonant
Fermion atomic condensates which are realized recently. We examine optimal
experimental setups to achieve it by solving Bogoliubov-de Gennes equation both
for idealized one-dimensional and realistic three-dimensional cases. The
spontaneous modulation of this superfluid is shown to be directly imaged as the
density profiles either by optical absorption or by Stern-Gerlach experiments.Comment: 4 pages, 3 figure
Knight shift detection using gate-induced decoupling of the hyperfine interaction in quantum Hall edge channels
A method for the observation of the Knight shift in nanometer-scale region in
semiconductors is developed using resistively detected nuclear magnetic
resonance (RDNMR) technique in quantum Hall edge channels. Using a gate-induced
decoupling of the hyperfine interaction between electron and nuclear spins, we
obtain the RDNMR spectra with or without the electron-nuclear spin coupling. By
a comparison of these two spectra, the values of the Knight shift can be given
for the nuclear spins polarized dynamically in the region between the relevant
edge channels in a single two-dimensional electron system, indicating that this
method has a very high sensitivity compared to a conventional NMR technique.Comment: 4 pages, 4 figures, to appear in Applied Physics Letter
Effect of thermal fluctuations on spin degrees of freedom in spinor Bose-Einstein condensates
We consider the effect of thermal fluctuations on rotating spinor F=1
condensates in axially-symmetric vortex phases, when all the three hyperfine
states are populated. We show that the relative phase among different
components of the order parameter can fluctuate strongly due to the weakness of
the interaction in the spin channel. These fluctuations can be significant even
at low temperatures. Fluctuations of relative phase lead to significant
fluctuations of the local transverse magnetization of the condensate. We
demonstrate that these fluctuations are much more pronounced for the
antiferromagnetic state than for the ferromagnetic one.Comment: 5 pages, 2 figures; final version, accepted for publication in Phys.
Rev.
Thermal Equilibria of Optically Thin, Magnetically Supported, Two-Temperature, Black Hole Accretion Disks
We obtained thermal equilibrium solutions for optically thin, two-temperature
black hole accretion disks incorporating magnetic fields. The main objective of
this study is to explain the bright/hard state observed during the bright/slow
transition of galactic black hole candidates. We assume that the energy
transfer from ions to electrons occurs via Coulomb collisions. Bremsstrahlung,
synchrotron, and inverse Compton scattering are considered as the radiative
cooling processes. In order to complete the set of basic equations, we specify
the magnetic flux advection rate. We find magnetically supported (low-beta),
thermally stable solutions. In these solutions, the total amount of the heating
via the dissipation of turbulent magnetic fields goes into electrons and
balances the radiative cooling. The low- solutions extend to high mass
accretion rates and the electron temperature is moderately cool. High
luminosities and moderately high energy cutoffs in the X-ray spectrum observed
in the bright/hard state can be explained by the low-beta solutions.Comment: 24 pages, 10 figures,accepted for publication in Astrophysical
Journa
Topological Structure of a Vortex in Fulde-Ferrell-Larkin-Ovchinnikov State
We find theoretically that the vortex core in the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state is quite different from the
ordinary core by a simple topological reason. The intersection point of a
vortex and nodal plane of the FFLO state empties the excess spins. This leads
to observable consequences in the spatial structure of the spontaneous
magnetization. We analyze this topological structure based on the low lying
excitation spectrum by solving microscopic Bogoliubov-de Gennes equation to
clarify its physical origin.Comment: 4 pages, 4 figure
A quantum walk with a delocalized initial state: contribution from a coin-flip operator
A unit evolution step of discrete-time quantum walks is determined by both a
coin-flip operator and a position-shift operator. The behavior of quantum
walkers after many steps delicately depends on the coin-flip operator and an
initial condition of the walk. To get the behavior, a lot of long-time limit
distributions for the quantum walks starting with a localized initial state
have been derived. In the present paper, we compute limit distributions of a
2-state quantum walk with a delocalized initial state, not a localized initial
state, and discuss how the walker depends on the coin-flip operator. The
initial state induced from the Fourier series expansion, which is called the
delocalized initial state in this paper, provides different
limit density functions from the ones of the quantum walk with a localized
initial state.Comment: International Journal of Quantum Information, Vol.11, No.5, 1350053
(2013
- …
