12 research outputs found

    A comparative evaluation of different models and brands of direct ophthalmoscopes and retinoscopes

    Get PDF
    The purpose of this study was to compare the various ophthalmoscopes and streak retinoscopes currently available on the U.S. market. Subjective and objective tests were utilized to assess overall performance. Each instrument tested received a sub score based on performance in each of several subjective categories which were then combined to arrive at a total score. The instruments were then ranked from highest overall score to the lowest. The Keeler Vista 20 was the highest rated ophthalmoscope largely due to excellent optical clarity. The Vista was followed by the Keeler Specialist, Propper MMI, Neitz BX alpha, Welch Allyn 11730, Visuscope, Ri-Scope and Heine Autofoc 2. Of the pocket ophthalmoscopes tested the Keeler rated first again, followed by Neitz, Welch Allyn, Propper and Maylite. Streak retinoscopes evaluation placed the Neitz on top with the Welch Allyn prototype, Propper and Keeler units placing second, third and fourth

    Genomic Resources for Sea Lice: Analysis of ESTs and Mitochondrial Genomes

    Get PDF
    Sea lice are common parasites of both farmed and wild salmon. Salmon farming constitutes an important economic market in North America, South America, and Northern Europe. Infections with sea lice can result in significant production losses. A compilation of genomic information on different genera of sea lice is an important resource for understanding their biology as well as for the study of population genetics and control strategies. We report on over 150,000 expressed sequence tags (ESTs) from five different species (Pacific Lepeophtheirus salmonis (49,672 new ESTs in addition to 14,994 previously reported ESTs), Atlantic L. salmonis (57,349 ESTs), Caligus clemensi (14,821 ESTs), Caligus rogercresseyi (32,135 ESTs), and Lernaeocera branchialis (16,441 ESTs)). For each species, ESTs were assembled into complete or partial genes and annotated by comparisons to known proteins in public databases. In addition, whole mitochondrial (mt) genome sequences of C. clemensi (13,440 bp) and C. rogercresseyi (13,468 bp) were determined and compared to L. salmonis. Both nuclear and mtDNA genes show very high levels of sequence divergence between these ectoparastic copepods suggesting that the different species of sea lice have been in existence for 37–113 million years and that parasitic association with salmonids is also quite ancient. Our ESTs and mtDNA data provide a novel resource for the study of sea louse biology, population genetics, and control strategies. This genomic information provides the material basis for the development of a 38K sea louse microarray that can be used in conjunction with our existing 44K salmon microarray to study host–parasite interactions at the molecular level. This report represents the largest genomic resource for any copepod species to date

    Cyclodextrin-responsive nanogel as an artificial chaperone for horseradish peroxidase

    No full text
    The thermal stabilization and refolding of horseradish peroxidase (HRP) upon heating were investigated using an artificial molecular chaperone consisting of cholesterol-bearing pullulan (CHP) nanogels. The CHP nanogels inhibited the aggregation of HRP under heating by complexation with the denatured HRP. The enzyme activity of HRP complexed with CHP nanogels was not detected. However, the enzyme activity recovered up to 80% of native HRP after the addition of cyclodextrin (CD) to the complex. The dissociation of CHP nanogels was induced by the formation of an inclusion complex of cholesterol groups of CHP with CD. The enzyme activity of HRP was only significantly recovered by the addition of ÎČ-CD or its derivatives. Natural molecular chaperones, such as GroEL/ES, trap, fold, and release the nonnative proteins by changing the hydrophobicity of the specific sites of the molecular chaperone that interact with the nonnative protein. The functional mechanism of the nanogel chaperon system is similar to that of natural molecular chaperones. The nanogel chaperone system is a useful tool to aid the refolding and thermal stabilization of unstable proteins for post-genome research, and in medical and biological applications

    The Cyclin-dependent Kinase Inhibitor Dacapo Promotes Genomic Stability during Premeiotic S Phase

    No full text
    The proper execution of premeiotic S phase is essential to both the maintenance of genomic integrity and accurate chromosome segregation during the meiotic divisions. However, the regulation of premeiotic S phase remains poorly defined in metazoa. Here, we identify the p21Cip1/p27Kip1/p57Kip2-like cyclin-dependent kinase inhibitor (CKI) Dacapo (Dap) as a key regulator of premeiotic S phase and genomic stability during Drosophila oogenesis. In dap−/− females, ovarian cysts enter the meiotic cycle with high levels of Cyclin E/cyclin-dependent kinase (Cdk)2 activity and accumulate DNA damage during the premeiotic S phase. High Cyclin E/Cdk2 activity inhibits the accumulation of the replication-licensing factor Doubleparked/Cdt1 (Dup/Cdt1). Accordingly, we find that dap−/− ovarian cysts have low levels of Dup/Cdt1. Moreover, mutations in dup/cdt1 dominantly enhance the dap−/− DNA damage phenotype. Importantly, the DNA damage observed in dap−/− ovarian cysts is independent of the DNA double-strands breaks that initiate meiotic recombination. Together, our data suggest that the CKI Dap promotes the licensing of DNA replication origins for the premeiotic S phase by restricting Cdk activity in the early meiotic cycle. Finally, we report that dap−/− ovarian cysts frequently undergo an extramitotic division before meiotic entry, indicating that Dap influences the timing of the mitotic/meiotic transition
    corecore