43 research outputs found

    The effect of alpha(+)-thalassaemia on the incidence of malaria and other diseases in children living on the coast of Kenya

    Get PDF
    BACKGROUND: The alpha-thalassaemias are the commonest genetic disorders of humans. It is generally believed that this high frequency reflects selection through a survival advantage against death from malaria; nevertheless, the epidemiological description of the relationships between alpha-thalassaemia, malaria, and other common causes of child mortality remains incomplete. METHODS AND FINDINGS: We studied the alpha+-thalassaemia-specific incidence of malaria and other common childhood diseases in two cohorts of children living on the coast of Kenya. We found no associations between alpha+-thalassaemia and the prevalence of symptomless Plasmodium falciparum parasitaemia, the incidence of uncomplicated P. falciparum disease, or parasite densities during mild or severe malaria episodes. However, we found significant negative associations between alpha+-thalassaemia and the incidence rates of severe malaria and severe anaemia (haemoglobin concentration < 50 g/l). The strongest associations were for severe malaria anaemia (> 10,000 P. falciparum parasites/mul) and severe nonmalaria anaemia; the incidence rate ratios and 95% confidence intervals (CIs) for alpha+-thalassaemia heterozygotes and homozygotes combined compared to normal children were, for severe malaria anaemia, 0.33 (95% CI, 0.15,0.73; p = 0.006), and for severe nonmalaria anaemia, 0.26 (95% CI, 0.09,0.77; p = 0.015). CONCLUSIONS: Our observations suggest, first that selection for alpha+-thalassaemia might be mediated by a specific effect against severe anaemia, an observation that may lead to fresh insights into the aetiology of this important condition. Second, although alpha+-thalassaemia is strongly protective against severe and fatal malaria, its effects are not detectable at the level of any other malaria outcome; this result provides a cautionary example for studies aimed at testing malaria interventions or identifying new malaria-protective genes

    β-Thalassemia pathogenic variants in a cohort of children from the East African coast

    Get PDF
    BACKGROUND: β-Thalassemia is rare in sub-Saharan Africa. Previous studies have suggested that it is limited to specific parts of West Africa. Based on hemoglobin A2 (HbA2 ) concentrations measured by HPLC, we recently speculated that β-thalassemia might also be present on the East African coast of Kenya. Here, we follow this up using molecular methods. METHODS: We used raised hemoglobin A2 (HbA2 ) values (> 4.0% of total Hb) to target all HbAA members of a cohort study in Kilifi, Kenya, for HBB sequencing for β-thalassemia (n = 99) together with a sample of HbAA subjects with lower HbA2 levels. Because HbA2 values are artifactually raised in subjects carrying sickle hemoglobin (HbS) we sequenced all participants with an HPLC pattern showing HbS without HbA (n = 116) and a sample with a pattern showing both HbA and HbS. RESULTS: Overall, we identified 83 carriers of four separate β-thalassemia pathogenic variants: three β0 -thalassemia [CD22 (GAA→TAA), initiation codon (ATG→ACG), and IVS1-3' end del 25bp] and one β+ -thalassemia pathogenic variants (IVS-I-110 (G→A)). We estimated the minimum allele frequency of all variants combined within the study population at 0.3%. CONCLUSIONS: β-Thalassemia is present in Kilifi, Kenya, an observation that has implications for the diagnosis and clinical care of children from the East Africa region

    Case report: β-thalassemia major on the East African coast

    Get PDF
    Background: β-thalassemia is rare in sub-Saharan Africa and to our knowledge there has been no case of homozygous β-thalassemia major reported from this region. In a recent cohort study, we identified four β-thalassemia mutations among 83 heterozygous carriers in Kilifi, Kenya. One of the mutations identified was a rare β-globin gene initiation codon mutation (ATG➝ACG) (rs33941849). Here we present a patient with β-thalassemia major resulting from this mutation, only the second homozygous patient to have been reported. Methods: The female patient presented to Kilifi County Hospital aged two years with a one week left sided abdominal swelling. Clinical, hematological and genetic information were collected at admission and follow-up. Results: Admission bloods revealed marked anemia, with a hemoglobin (Hb) value of 6.6 g/dL and a low mean corpuscular volume of 64 fL. High performance liquid chromatography (HPLC) revealed the absence of HbA0 and elevated levels of HbF, suggesting a diagnosis of β-thalassemia major. Sequencing revealed that the child was homozygous for the rs33941849 initiation codon mutation. Conclusions: We hope that this study will create awareness regarding the presence of β-thalassemia as a potential public health problem in the East Africa region and will prompt the development of local guidelines regarding the diagnosis and management of this condition

    The epidemiology of sickle cell disease in children recruited in infancy in Kilifi, Kenya: a prospective cohort study.

    Get PDF
    BACKGROUND: Sickle cell disease is the most common severe monogenic disorder in humans. In Africa, 50-90% of children born with sickle cell disease die before they reach their fifth birthday. In this study, we aimed to describe the comparative incidence of specific clinical outcomes among children aged between birth and 5 years with and without sickle cell disease, who were resident within the Kilifi area of Kenya. METHODS: This prospective cohort study was done on members of the Kilifi Genetic Birth Cohort Study (KGBCS) on the Indian Ocean coast of Kenya. Recruitment to the study was facilitated through the Kilifi Health and Demographic Surveillance System (KHDSS), which covers a resident population of 260 000 people, and was undertaken between Jan 1, 2006, and April 30, 2011. All children who were born within the KHDSS area and who were aged 3-12 months during the recruitment period were eligible for inclusion. Participants were tested for sickle cell disease and followed up for survival status and disease-specific admission to Kilifi County Hospital by passive surveillance until their fifth birthday. Children with sickle cell disease were offered confirmatory testing and care at a dedicated outpatient clinic. FINDINGS: 15 737 infants were recruited successfully to the KGBCS, and 128 (0·8%) of these infants had sickle cell disease, of whom 70 (54·7%) enrolled at the outpatient clinic within 12 months of recruitment. Mortality was higher in children with sickle cell disease (58 per 1000 person-years of observation, 95% CI 40-86) than in those without sickle cell disease (2·4 per 1000 person-years of observation, 2·0-2·8; adjusted incidence rate ratio [IRR] 23·1, 95% CI 15·1-35·3). Among children with sickle cell disease, mortality was lower in those who enrolled at the clinic (adjusted IRR 0·26, 95% CI 0·11-0·62) and in those with higher levels of haemoglobin F (HbF; adjusted IRR 0·40, 0·17-0·94). The incidence of admission to hospital was also higher in children with sickle cell disease than in children without sickle cell disease (210 per 1000 person-years of observation, 95% CI 174-253, vs 43 per 1000 person-years of observation, 42-45; adjusted IRR 4·80, 95% CI 3·84-6·15). The most common reason for admission to hospital among those with sickle cell disease was severe anaemia (incidence 48 per 1000 person-years of observation, 95% CI 32-71). Admission to hospital was lower in those with a recruitment HbF level above the median (IRR 0·43, 95% CI 0·24-0·78; p=0·005) and those who were homozygous for α-thalassaemia (0·07, 0·01-0·83; p=0·035). INTERPRETATION: Although morbidity and mortality were high in young children with sickle cell disease in this Kenyan cohort, both were reduced by early diagnosis and supportive care. The emphasis must now move towards early detection and prevention of long-term complications of sickle cell disease. FUNDING: Wellcome Trust

    Haplotype heterogeneity and low linkage disequilibrium reduce reliable prediction of genotypes for the ‑α3.7I form of α-thalassaemia using genome-wide microarray data [version 1; peer review: 1 approved, 1 approved with reservations]

    Get PDF
    Background: The -α3.7I-thalassaemia deletion is very common throughout Africa because it protects against malaria. When undertaking studies to investigate human genetic adaptations to malaria or other diseases, it is important to account for any confounding effects of α-thalassaemia to rule out spurious associations. Methods: In this study we have used direct α-thalassaemia genotyping to understand why GWAS data from a large malaria association study in Kilifi Kenya did not identify the α-thalassaemia signal. We then explored the potential use of a number of new approaches to using GWAS data for imputing α-thalassaemia as an alternative to direct genotyping by PCR. Results: We found very low linkage-disequilibrium of the directly typed data with the GWAS SNP markers around α-thalassaemia and across the haemoglobin-alpha (HBA) gene region, which along with a complex haplotype structure, could explain the lack of an association signal from the GWAS SNP data. Some indirect typing methods gave results that were in broad agreement with those derived from direct genotyping and could identify an association signal, but none were sufficiently accurate to allow correct interpretation compared with direct typing, leading to confusing or erroneous results. Conclusions: We conclude that going forwards, direct typing methods such as PCR will still be required to account for α-thalassaemia in GWAS studies

    Non-O ABO blood group genotypes differ in their associations with Plasmodium falciparum rosetting and severe malaria

    Get PDF
    Blood group O is associated with protection against severe malaria and reduced size and stability of P. falciparum-host red blood cell (RBC) rosettes compared to non-O blood groups. Whether the non-O blood groups encoded by the specific ABO genotypes AO, BO, AA, BB and AB differ in their associations with severe malaria and rosetting is unknown. The A and B antigens are host RBC receptors for rosetting, hence we hypothesized that the higher levels of A and/or B antigen on RBCs from AA, BB and AB genotypes compared to AO/BO genotypes could lead to larger rosettes, increased microvascular obstruction and higher risk of malaria pathology. We used a case-control study of Kenyan children and in vitro adhesion assays to test the hypothesis that “double dose” non-O genotypes (AA, BB, AB) are associated with increased risk of severe malaria and larger rosettes than “single dose” heterozygotes (AO, BO). In the case-control study, compared to OO, the double dose genotypes consistently had higher odds ratios (OR) for severe malaria than single dose genotypes, with AB (OR 1.93) and AO (OR 1.27) showing most marked difference (p = 0.02, Wald test). In vitro experiments with blood group A-preferring P. falciparum parasites showed that significantly larger rosettes were formed with AA and AB host RBCs compared to OO, whereas AO and BO genotypes rosettes were indistinguishable from OO. Overall, the data show that ABO genotype influences P. falciparum rosetting and support the hypothesis that double dose non-O genotypes confer a greater risk of severe malaria than AO/BO heterozygosity

    A predictive algorithm for identifying children with sickle cell anemia among children admitted to hospital with severe anemia in Africa

    Get PDF
    Sickle cell anemia (SCA) is common in sub-Saharan Africa where approximately 1% of births are affected. Severe anemia is a common cause for hospital admission within the region yet few studies have investigated the contribution made by SCA. The Transfusion and Treatment of severe anemia in African Children Trial (ISRCTN84086586) investigated various treatment strategies in 3983 children admitted with severe anemia (hemoglobin < 6.0 g/dl) based on two severity strata to four hospitals in Africa (three Uganda and one Malawi). Children with known-SCA were excluded from the uncomplicated stratum and capped at 25% in the complicated stratum. All participants were genotyped for SCA at trial completion. SCA was rare in Malawi (six patients overall), so here we focus on the participants recruited in Uganda. We present baseline characteristics by SCA status and propose an algorithm for identifying children with unknown-SCA. Overall, 430 (12%) and 608 (17%) of the 3483 Ugandan participants had known- or unknown-SCA, respectively. Children with SCA were less likely to be malaria-positive and more likely to have an affected sibling, have gross splenomegaly, or to have received a previous blood transfusion. Most outcomes, including mortality and readmission, were better in children with either known or unknown-SCA than non-SCA children. A simple algorithm based on seven admission criteria detected 73% of all children with unknown-SCA with a number needed to test to identify one new SCA case of only two. Our proposed algorithm offers an efficient and cost-effective approach to identifying children with unknown-SCA among all children admitted with severe anemia to African hospitals where screening is not widely available

    Malaria protection due to sickle haemoglobin depends on parasite genotype

    Get PDF
    Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2-4 PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations

    Uncovering treatment burden as a key concept for stroke care: a systematic review of qualitative research

    Get PDF
    &lt;b&gt;Background&lt;/b&gt; Patients with chronic disease may experience complicated management plans requiring significant personal investment. This has been termed ‘treatment burden’ and has been associated with unfavourable outcomes. The aim of this systematic review is to examine the qualitative literature on treatment burden in stroke from the patient perspective.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods and findings&lt;/b&gt; The search strategy centred on: stroke, treatment burden, patient experience, and qualitative methods. We searched: Scopus, CINAHL, Embase, Medline, and PsycINFO. We tracked references, footnotes, and citations. Restrictions included: English language, date of publication January 2000 until February 2013. Two reviewers independently carried out the following: paper screening, data extraction, and data analysis. Data were analysed using framework synthesis, as informed by Normalization Process Theory. Sixty-nine papers were included. Treatment burden includes: (1) making sense of stroke management and planning care, (2) interacting with others, (3) enacting management strategies, and (4) reflecting on management. Health care is fragmented, with poor communication between patient and health care providers. Patients report inadequate information provision. Inpatient care is unsatisfactory, with a perceived lack of empathy from professionals and a shortage of stimulating activities on the ward. Discharge services are poorly coordinated, and accessing health and social care in the community is difficult. The study has potential limitations because it was restricted to studies published in English only and data from low-income countries were scarce.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt; Stroke management is extremely demanding for patients, and treatment burden is influenced by micro and macro organisation of health services. Knowledge deficits mean patients are ill equipped to organise their care and develop coping strategies, making adherence less likely. There is a need to transform the approach to care provision so that services are configured to prioritise patient needs rather than those of health care systems

    Malaria is a cause of iron deficiency in African children

    Get PDF
    Malaria and iron deficiency (ID) are common and interrelated public health problems in African children. Observational data suggest that interrupting malaria transmission reduces the prevalence of ID1. To test the hypothesis that malaria might cause ID, we used sickle cell trait (HbAS, rs334), a genetic variant that confers specific protection against malaria2, as an instrumental variable in Mendelian randomization analyses. HbAS was associated with a 30% reduction in ID among children living in malaria-endemic countries in Africa (n = 7,453), but not among individuals living in malaria-free areas (n = 3,818). Genetically predicted malaria risk was associated with an odds ratio of 2.65 for ID per unit increase in the log incidence rate of malaria. This suggests that an intervention that halves the risk of malaria episodes would reduce the prevalence of ID in African children by 49%
    corecore